

Содержание	Лист 2
	Лист
1. Введение	2
2. Условия расчета	6
3. Условные обозначения основных величин	7
4. Плотность влажного воздуха на заданном расстоянии от уровня моря	8
5. Планы скоростей	11
6. Исходные таблицы	14
7. Построение напорной характеристики	16
8. Влияние местоположения	
9. Примеры расчета	21
10. Прямые и обратные уравнения канального вентилятора K315L	34
11. Проверка метода получения напорной характеристики	38
12. Ряд вентиляторов	44
13. Короткий алгоритм	56
14. Заключение	
15. Список используемой литературы	63

1. Введение.

Без уравнений напорных характеристик вентиляторов проектирование систем вентиляции и кондиционирования, процесс длительный, трудоемкий, вязкий. При проектировании систем вентиляции в основном применяются центробежные вентиляторы. Центробежные вентиляторы изготавливают различных конструкций: в корпусе Рейнольдса, круглые канальные, прямоугольные канальные, но суть у всех одна - они центробежные. В каталогах для каждого вентилятора, представлены отличные графики опытных напорных характеристик. Особое значение уравнения напорных характеристик центробежных вентиляторов имеют для рядовых инженеров, которые проектируют, участвуют в монтаже и сами испытывают свои системы. В советской, современной отечественной литературе, по ценробежным насосам и вентиляторам отсутствуют инженерные методы построения уравнений напорных характеристик. 20 лет назад мною была изучена масса литературы, и наконец была найдена великолепная книга: [1] Пфлейдерер К. Лопаточные машины для жидкостей и газов. М. Машиностроение 1960. Немецкий ученый Карл Пфлейдерер подробно и доступно описал построение напорной характеристики насосов и вентиляторов в этой книге. Это единственный источник в котором изложен метод приближенного построения уравнения ПРИ ПРОЕКТИРОВАНИИ ВЕНТИЛЯТОРОВ И НАСОСОВ. К. Пфлейдерер: "... до настоящего времени еще нет возможности надежно заранее определить напорную характеристику. ... потери которые также следует учитывать ... могут быть определены лишь приближенно", см. [1] стр. 420. А рядовому инженеру уравнения напорных характеристик вентиляторов необходимы для Проектирования СИСТЕМ ВЕНТИЛЯЦИИ, и кроме того у него уже есть ГРАФИКИ ОПЫТНЫХ Напорных характеристик (в каталогах). То есть, рядовому инженеру, можно определить приближенное уравнение напорной характеристики, а затем привести приближенное уравнение к опытному по графику.

В этой работе использован метод Пфлейдерера, с минимальными коментариями, за подробностями обращаться к первоисточнику. Характеристика отличается от опытной (в каталогах), поэтому в уравнения введены два деформационных коэффициента (для каждого вентилятора свои), для приведения теоретической (приближенной) характеристики к опытной на рабочем участке. Рабочий участок напорной характеристики это участок эффективной, устойчивой работы вентилятора с большим КПД. В отечественных каталогах представленны очень не удобные графики характеристик: кривые расхода, мощности, КПД, давления: статические, динамические, полные ...оси в логарифмическом масштабе, все это на одном графике!!! Отечественные каталоги созданы специалистами производителями вентиляторов и удобны только для них. В зарубежных каталогах: один вентилятор - одна кривая, давление - статическое, оси в масштабе 1:1, все ясно и понятно. Для рядового инженера важно только одно давление - статическое (его легко измерить и посчитать).

Прямое уравнение это зависимость напора вентилятора от расхода H = f(V). Обратное уравнение (не должно вызывать удивления) это зависимость расхода вентилятора от напора V = f(H). Прямые и обратные уравнения напорной характеристики позволяет одновременно проектировать систему вентиляции вместе с вентилятором .

При проектировании системы воздуховодов вычисляются сопротивления на различных участках, затем находится сумма всех сопротивлений и определяется сопротивление всей системы, и по обратному уравнению вычисляется расход по системе.

В таблице 1 пример поиска вентилятора для системы с сопротивлением 440 Па. В таблице 2 представлен расчет приточной системы с вентилятором КТ 50-30-4. Расчет системы вентиляции (с перебором вентиляторов) занимает от нескольких минут до часа.

Таблица 1

3	MOBEH	Диаграмма	Вентилятор	BP 86-77-5	8829	950	10845
4	MOBEH	Диаграмма	Вентилятор	ВР 300-45-2, 1,5 кВт	2523	1900	2555
5	MOBEH	Диаграмма	Вентилятор	ВР 300-45-2, 2,2 кВт	3370	2600	3500
6	Ostberg	Испытание	Вентилятор	CK100C	0	390	430
7	Systemair	Диаграмма	Вентилятор	K100XL	0	360	265
8	Systemair	Диаграмма	Вентилятор	K125XL	0	350	350
9	Systemair	Диаграмма	Вентилятор	K160XL	0	400	847
10	Systemair	Испытание	Вентилятор	K200L	242	490	1011
11	Systemair	Диаграмма	Вентилятор	K250L	194	485	981
12	Systemair	Диаграмма	Вентилятор	K315L	634	700	1688
13	Systemair	Диаграмма	Вентилятор	KD200L1	24	450	1325
14	Systemair	Диаграмма	Вентилятор	KD250L1	572	550	1985
15	Systemair	Диаграмма	Вентилятор	KD315L	632	550	2160
16	Systemair	Диаграмма	Вентилятор	KD355XL3	0	350	4320
17	Systemair	Диаграмма	Вентилятор	KD400XL3	0	450	6400
18	Systemair	Диаграмма	Вентилятор	KD450XL3	2635	550	8150
19	Systemair	Диаграмма	Вентилятор	KT 40-20-4	0	250	1284
20	Systemair	Диаграмма	Вентилятор	KT 50-25-4	0	310	1929
21	Systemair	Диаграмма	Вентилятор	KT 50-30-4	0	425	2723
22	Systemair	Диаграмма	Вентилятор	KT 60-30-4	1087	450	3407
23	Systemair	Диаграмма	Вентилятор	KT 60-35-4	3558	650	4400
24	Systemair	Диаграмма	Вентилятор	KT 70-40-4	5442	820	5200

KT 80-50-4

KT100-50-6

RS60-35 L3

RS70-40 L3

RS80-50 L3

RS100-50 L3

Бризарт 350

Бризарт 500

Бризарт 1000

Бризарт 2000

TLP125/1.2

TLP160/2.1

TLP200/3...5

RS40-20L

Вентилятор

Вентилятор

Вентилятор

Вентилятор

Вентилятор

Вентилятор

Вентилятор

ΑПК

ΑПК

ΑПК

АПК

АПК

ΑПК

Расчет производительности вентиляторов по их обратным функциям. Начало 15.12.04.

Марка

BK 11-2-2

BP 86-77-2.5

L, мкубч

0

1727

6054

7438

355

1659

2321

6051

8739

210

0

Ртах, Па

425

830

1100

650

620

580

550

900

1000

410

550

420

420

150

300

400

Lmax

1450

2000

6000

8750

1320

4320

5000

9350

12000

430

650

1000

2000

145

330

560

Nº

25 Systemair

26 Systemain

27 Systemair

28 Systemair

29 Systemair

30 Systemair

31 Systemair

32 Благовест

33 Благовест

34 Благовест

35 Благовест

36 Systemain

37 Systemair

38 Systemair

Фирма

1 UHHOBEHT

2 MOBEH

Функция

Диаграмма

Диаграмма

Іспытание

Диаграмма

Тип

работа	минимальное давление Р ст = 250 Па
АВАРИЯ	минимальное давление Р _{ст} = 500 Па
АВАРИЯ	минимальное давление Р _{ст} = 900 Па
работа	минимальное давление Р _{ст} = 250 Па

Таблица 2

Приточный воздуховод постоянного сеч- отверстиями разной площади. I< X3. Счет о				Па	араметр	ы воздуц	иной сре,	ды
Ввод				Темпера	тура потока	в внутри по	мещения, С	2
Клапан ZR: 1 - есть.		1		Темпера	тура потока	а на улице,	C°	_
Глушитель SG: 1 - есть.	\top	0	1		рическое да			
Фильтр EU3: 1 - есть.	\top	1	1			Счет		
Нагреватель электро: 1 - есть.		1	1	Баромет	рическое да		9	10
Нагреватель водяной: 1 - есть.		0	1		гь воздуха,			
Количество ветвей воздуховода, шт	+	1	nn		нематическ		и воздуха	0,0
Диаметр ветви воздуховода d, м.	+	0,440	i— '				постдуна	
Колич отверстий в одной ветви - п	Τ.	10	1-					
Полная производительность, м ³ /ч.	1	2229	_	Pa	счет сечени	eŭ nosnivon	0.705	
Скорость в отверстии	╅	3,00	- ·	А, м	B, M		м/с	
Коэф. Шероховатости	٠,	1,000E-04	-	0.50	0.30		1.1	
Коэф. Расхода	+		_^ kap	dэкв, м	0,38		диаметр	
Коэф. См. удара	+	0,40	ı— ·	S, мкв	0,15		сечения	
Длина нагнетающего воздуховода I, м	+	15,00	-	dp, M	0,44		10 сечению	
Вычисления		.0,00		alet in	9,11	Human Lib I	vesemmo	
Производительность на 1 ветвь, м ³ /ч	Т	2229		Р, Па	KT 50-30-4	Boss	/ховод	
	+-		1-					
Площадь воздухов.	+	0,152	1-	135	L, M ³ /4	_	жесткий	
Скорость в магистрали, м/с	+	4,072	1-	Dcp, мм	2230	_k=0,003	гибкий	
Число Рейнольдса	_	97E+05	-	176				
Коэф. Трения	_	0,0185	1-					
Х3, м	_	71,461 ДА	-					
Длина воздуховода меньше X3? Расстояние между отверстиями по длине,	+	<u>да</u> 1324	2	3	4	5	6	-
Номер отверстия, от заглушки	+-	1024	2	3	4	5	6	
Параметр С	+-		2,5370	4,3481	6,0333	7,5925	9,0257	10,
Площадь ответстия		0.0206	0.0208	0.0212	0,0008	0.0225	0,0235	0,
Диаметр отверстия	+	162	163	164	166	169	_	
скорость в отверстии	\top	3,0	3.0	2.9	2.8	2,8	2.6	
Коэф. Сопротивления	\top	1,51	0,0000		0,0000	0,0000	0,0000	0.
Падение давления		15,1	0,0000	0,0000	0,0000	0,0000	0,0000	0,
Усредненный диаметр		176						
Расход через одно отверстие, м ³ /ч		223	1					
Расчет полного сопротивления]					
Ввод								
Количество поворотов, шт		1,0	_np					
Длина всасывающего воздуховода, м		1,0						
Счет								
ZR 50-30		6		유				
SG 50-30		0						
Фильтр FKU 50-30		66		Провере				
Нагреватель эл ELN 50-30	_	16,4		<u>&</u>				
Нагреватель вод WWN 50-30/2	1	0,0		_				
marpenarems bog www.oo-oo/2	_							
Падение давления в отверстиях, Па	_	15,1						
Падение давления в отверстиях, Па Динамическое давление, Па		10,0	_pd					
Падение давления в отверстиях, Па Динамическое давление, Па Сопротивление на входе, Па	1	10,0 10,0	_pd					
Падение давления в отверстиях, Па Динамическое давление, Па Сопротивление на входе, Па Сопротивление всасыв воздуховода, Па	1	10,0 10,0 0,4	_pd					
Падение давления в отверстиях, Па Динамическое давление, Па Сопротивление на входе, Па Сопротивление всасыв воздуховода, Па Сопротивление нагнет воздуховода, Па	1	10,0 10,0 0,4 6,3	_pd					
Падение давления в отверстиях, Па Динамическое давление, Па Сопротивление на входе, Па Сопротивление всасыв воздуховода, Па	1	10,0 10,0 0,4	_pd					

2. Условия расчета.

Для получения напорных уравнений выбраны замечательные отечественные вентиляторы ОАО "Мовен": ВР-86-77 с лопатками загнутыми назад и ВР-300-45, с лопатками загнутыми вперед. Эти вентиляторы созданы по отработанным аэродинамическим схемам [4], имеют минимальные габариты, отличные характеристики, применяются в системах вентиляции и кондиционирования, отличаются высокой надежностью.

Напорные уравнения получены при нормальных внешних условиях по каталогу ОАО Мовен [6]: температура воздуха 20°С (плотность 1,19кг/м³), влажность 50%, барометрическое давление на уровне моря 760 мм.рт.ст. В каталоге [6] представлены аэродинамические характеристики в виде диаграмм, но по ним невозможно определить расчетные точки. В каталоге [6] представлены таблицы технических характеристик, где даны две крайние точки рабочего диапазона вентиляторов. По этим крайним точкам и получены напорные уравнения.

	тив-	m. np a	Двигате	2ЛЬ	Частота вращения	Парамо в рабоче	Масса венти-	
Типоразмер вентилятора	Конструктив- ное исполнение	Относит. диаметр колеса	Типоразмер	Мощ- ность, кВт	рабочего колеса, мин ⁻¹	Производи- тельность, тыс. м³/час	Полное давление, Па	лято- ра не более, кг
		1	АИМ63А4	0,25	1350	0,45-0,85	170-110	31,5
			АИМ63В2	0,55	2750	0,85-1,75	720-440	31,5
		0,9	АИМ63А4	0,25	1350	0,4-0,8	120-70	31,5
BP-86-77-2,5B		0,9	АИМ63А2	0,37	2750	0,85-1,65	490-300	31,5
ВР-86-77-2,5ВЖ	1	0,95	АИМ63А4	0,25	1350	0,44-0,85	150-95	31,5
BP-86-77-2,5BK1	1	0,95	АИМ63В2	0,55	2750	0,9-1,75	620-380	31,5
ВР-86-77-2,5ВК1Ж		1,05	АИМ63А4	0,25	1350	0,45-0,85	190-130	31,5
		1,05	AUM71A2	0,75	2750	0,85-1,7	800-540	34,5
		1,1	АИМ63А4	0,25	1350	0,47-0,85	230-170	31,5
		1,1	AUM71A2	0,75	2750	0,9-1,75	960-740	34,5

Расчет воспринимает следующие внешние условия: координата от уровня моря: от -5000м до 5000м, температура воздуха -50°С...100°С, влажность 0...100%.

Константы

 $t_k = 273.15^{\circ} K$ - температура Кельвина при 0° С;

M = 28.96, кг/кмоль - молекулярная масса воздуха;

 $M_{e} = 18.02$, кг/кмоль - молекулярная масса воды;

 $r = 8314, 3, \ \ / (\kappa моль K)$ - универсальная газовая постоянная;

 $r_v = 287.1, \ \mathcal{Д}$ жс / (кг o C) - газовая постоянная воздуха;

g = 9.81, м² / c - ускорение свободного падения;

Переменные

 t_v , ${}^o\mathrm{C}$ - температура воздуха;

 φ_{v} , % - влажность воздуха;

d, г/кг - влагосодержание на линии

насыщения;

 d_{vn} , г/кг - влагосодержание при заданной влажности;

 p_{b} , мм.рт.ст - барометрическое давление на уровне моря;

 p_{a} , Па - давление на уровне моря;

 p_{ob} , Па - давление на уровне объекта;

 p_{vn} , Па - парциальное давление воздуха;

 $h_{ob}, {\it M}$ - высота расположения объекта над уровнем моря;

 ρ_{sy} , кг / M^3 - плотность сухого воздуха на уровне моря;

 $ho_{\mathit{sy}}^{\mathit{ob}}$, кг / m^{3} - плотность сухого воздуха

на уровне объекта;

 ho_{vl} , кг / \emph{M}^3 - плотность влажного воздуха на высоте объекта;

 H_{x} , Па - напор с учетом лопастей;

 V_x , м³/ч – расход;

 $k_{1},\ k_{2},\ k_{3}$ - коэф. основного уравнения;

n, об/мин - обороты колеса;

 n_s - быстроходность вентилятора;

```
d_{1}, м - внутренний диаметр колеса;
```

 d_2 , м - внешний диаметр колеса;

 $b_{\scriptscriptstyle 1}$, м - ширина лопасти на входе;

 b_2 , м - ширина лопасти на выходе;

z - число лопастей;

 t_1 - шаг лопастей;

 δ - толщина лопасти;

 k_{1} – коэффициент стеснения потока;

 ϕ - коэффициент кривизны лопастей;

р - коэффициент числа лопастей;

 η_z – гидравлический КПД;

 η_o – объемный КПД;

 $\eta_{_{M}}$ – механический КПД;

 $\eta_{_{\scriptscriptstyle H}}$ – КПД насоса;

 β_1 , - угол входа лопасти;

 β_2 , - угол выхода лопасти;

 α_3 , - угол между скоростями c_3 , u_2 ;

 φ - коэф. смягчения удара;

a, b, c - коэф. квадратного уравнения;

 $lpha,\ eta$ - коэф. приведенного уравнения;

 $i, i_1,$ - коэф. деформации.

4. Плотность влажного воздуха на заданном расстоянии от уровня моря .

Вентиляторы в России, работают в разнообразных географических и внешних условиях: в городах, на уровне моря, высоко в горах, в шахтах и т.д. Для этого необходимо вычислять плотность влажного воздуха на разных расстояниях от уровня моря. Плотность влажного воздуха расчитывается с использованием законов: Менделеева-Клайперона, Авогадро, Дальтона, см. [7]. Влажность для напорной характеристики вентилятора, не имеет практического значения, в расчет введена для определенности и для удаления повода для споров.

Барометрическое давление на высоте объекта, Па

$$p_{ob} = p_a \cdot e^{-\frac{M \cdot g \cdot h_{ob}}{r \cdot (t_n + t_k)}}$$

Плотность сухого воздуха на уровне моря

$$\rho_{sy} = \frac{p_a}{r_v \cdot (t_{vn} + 273.15)}$$

Плотность влажного воздуха

$$\rho_{vl} = \frac{(p_{ob} - 0.378 \cdot p_{vn})}{r_v \cdot (t_{vn} + 273.15)}$$

$$0,378 = 1 - \frac{M_e}{M}$$

молярные массы воды и сухого воздуха M_e , M

 p_{vn} , Па - парциальное давление водяных паров

Влагосодержание воздуха на линии насыщения в табличном виде из справочника [8], апроксимированны полиномами и используются в расчете. Парциальное давление влажного воздуха, так же получены по таблицам из справочника [8].

Влагосодержание воздуха

на линии насыщения d = f(t), г/кг

Интервал температур

$$t_n = -50...0^{\circ} C$$

$$d = 1 \cdot 10^{-6} \cdot (51 + t_n)^4 - 5 \cdot 10^{-5} \cdot (51 + t_n)^3 + 0.00141 \cdot (51 + t_n)^2 - 0.007954 \cdot (51 + t_n) + 0.043136$$

Интервал температур

$$t_n = 0...60^{\circ} C$$

$$d = 0,000014 \cdot (t_n + 1)^4 - 0,00081 \cdot (t_n + 1)^3 + 0,036212 \cdot (t_n + 1)^2 - 0,021506 \cdot (t_n + 1) + 4,254927$$

Интервал температур

$$t_n = 60...95^{\circ} C$$

$$d = 0,000042 \cdot (t_n - 60)^6 - 0,003784 \cdot (t_n - 60)^5 + 0,132364 \cdot (t_n - 60)^4 -$$

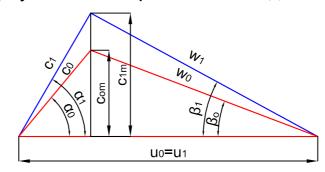
$$-2,191216 \cdot (t_n - 60)^3 + 17,821742 \cdot (t_n - 60)^2 - 50,095802 \cdot (t_n - 60) + 211,462203$$

Парциальное давление водяных паров,

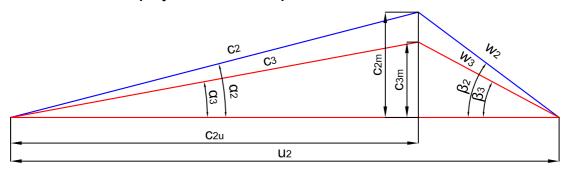
Интервал температур

$$t_n = -50...0^{\circ} C$$

$$p_{vn} = 0.000166 \cdot (51 + t_n)^4 - 0.007734 \cdot (51 + t_n)^3 + 0.218634 \cdot (51 + t_n)^2 - -1.206114 \cdot (51 + t_n) + 6.77659$$


$$t_n = 0...95^{\circ} C$$

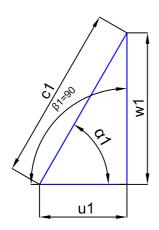
$$p_{vn} = 0.000971 \cdot (1 + t_n)^4 - 0.039272 \cdot (1 + t_n)^3 + 3.875334 \cdot (1 + t_n)^2 - 43.912819 \cdot (1 + t_n) + 705.212485$$


5. Планы скоростей.

В большинстве формул гидродинамического расчета лопастных насосов и вентиляторов, начиная с уравнения Бернулли, закона количества движения, используются скорости потока на входе и выходе из колеса. Поэтому в самом начале расчета определяются скорости, на входе и выходе из колеса, чтобы использовать эти величины на всех дальнейших этапах. Абсолютную скорость С частицы жидкости можно получить геометрическим суммированием переносной (окружной) U и относительной W скоростей. При геометрическом суммировании получается треугольник скоростей, см. рисунок 1 и рисунок 2. На рисунках красные треугольники - с учетом стеснения потока лопастями, [1].

Лопатки загнуты назад треугольник скоростей на входе

треугольник скоростей на выходе


Рисунок 1

- uo окружная скорость перед входом в колесо (скорость ненарушенного потока);
 - u1 окружная скорость непосредстенно на входном участке лопатки;
- w₀ относительная скорость перед входом в колесо (скорость ненарушенного потока);
- w1 относительная скорость непосредстенно на входном участке лопатки;
- с_о абсолютная (относительно корпуса) скорость перед входом в колесо (скорость ненарушенного потока);
- с1 абсолютная (относительно корпуса) скорость непосредстенно на входном участке лопатки;
- с_{от} радиальная составляющая абсолютной скорости перед входом в колесо (скорость ненарушенного потока);
- с_{1m} радиальная составляющая абсолютной скорости непосредстенно на входном участке лопатки;
- u2 окружная скорость перед выходом потока из колеса;
- w2 относительная скорость перед выходом потока из колеса;
- w3 относительная скорость потока непосредстенно после схода с лопатки;

Лопатки загнуты вперед (неполные треугольники)

скорости на входе

скорости на выходе

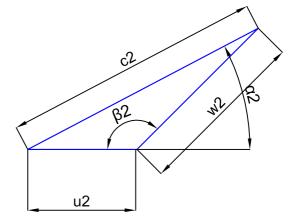


Рисунок 2

- с2 абсолютная (относительно корпуса) скорость потока перед выходом из колеса;
- с3 абсолютная (относительно корпуса) скорость непосредстенно после выхода потока из колеса;

c2m - радиальная составляющая абсолютной скорости перед выходом из колеса;

c3m - радиальная составляющая абсолютной скорости непосредстенно после выхода потока из колеса, [1].

Окружная скорость u, направлена по касательной к окружности в сторону вращения колеса; относительная скорость w направлена по касательной к поверхности лопатки; радиальная (меридиональная) составляющая абсолютной скорости cm направлена по радиусу от оси. Углы на планах: α - угол между абсолютной и окружной скоростями жидкости; β - угол между относительной скоростью w и отрицательным направлением окружной скорости u жидкости; β - угол между касательной к лопатке и отрицательным направлением окружной скорости u жидкости.

Темные места теории отмеченные разными авторами.

- а) Угол атаки лопасти: опыт показывает, что КПД вентилятора и высота всасывания насоса увеличиваются, если угол потока больше входного угла лопатки на 3...8°, этот угол называют углом атаки. При этом не происходит отрыва потока от лопатки. Но на самом деле расчетом невозможно определить угол атаки, угол атаки в расчете можно получить искусственно, изменением угла α1.
- б) Угол $\alpha 1$ так же невозможно вычислить: для лопаток загнутых назад $\alpha 1 = 85...90^\circ$; для лопаток загнутых вперед $\alpha 1 = 30...60^\circ$.
- в) Скорость во всасывающей трубе, или скорость входа С_о. У Ломакина: "Скорость входа должна быть выбрана так, чтобы обеспечить благоприятные условия для проектирования лопасти."...? Михайлов приводит эмпирическую формулу Руднева С.С. Пфлейдерер также рекомендует выбирать С_о. Это произвольное назначение скорости С_о приводит к произвольному значению С₁, что искажает план скоростей.

В расчете удалось избежать этих противоречий. Сначала вычисляется **C**₁ (по плану скоростей), затем производительность **V**, а потом вычисляется **C**₀. Такой порядок вычислений не искажает плана скоростей.

Для вычисления мощности необходимо найти КПД . Формулы КПД взяты у Ломакина [5].

Быстроходность

$$n_s = 3.65 \cdot n \cdot \frac{\sqrt{V}}{H^{0.75}}$$

Гидравлический кпд

$$\eta_{c} = 1 - \frac{0.42}{(\lg d_{1} - 0.172)^{2}}$$

Объемный кпд

$$\eta_{o\delta} = \frac{1}{1 + 0,68 \cdot n_s^{\frac{-2}{3}}}$$

Механический кпд

$$\eta_{\scriptscriptstyle M} = \frac{1}{1 + \frac{820}{n_{\scriptscriptstyle s}^2}}$$

Общий кпд

$$\eta = \eta_{\scriptscriptstyle \mathcal{E}} \cdot \eta_{\scriptscriptstyle o \tilde{o}} \cdot \eta_{\scriptscriptstyle \mathcal{M}}$$

Мощность

$$N = 1.1 \cdot \frac{\rho_{vl} \cdot g \cdot V \cdot H}{1000 \cdot \eta}, \kappa Bm$$

Треугольники соростей

Шаг лопастей на входе, м

$$t_1 = \frac{\pi \cdot d_1}{z}$$

Толщина лопастей на входе, м

$$\delta_1 = \frac{0,001 \cdot \delta}{\sin \beta_1}$$

Коэф. стеснения на входе

$$db_1 = \frac{t_1}{t_1 - \delta_1}$$

Шаг лопастей на выходе, м

$$t_2 = \frac{\pi \cdot d_2}{z}$$

Толщина лопастей на выходе, м

$$\delta_2 = \frac{0,001 \cdot \delta}{\sin \beta_2}$$

Коэф. стеснения на выходе

$$db_2 = \frac{t_2}{t_2 - \delta_2}$$

Частота вращения, 1/с

$$\omega = \frac{\pi \cdot n}{30}$$

Коэф. полного напора

$$\psi = \frac{2 \cdot g \cdot H}{u_2^2}$$

Вход потока

окружная скорость, м/с

$$u_1 = 0.5 \cdot d_1 \cdot \omega$$

абсолютная скорость, м/с

$$c_1 = \frac{u_1 \cdot \sin \beta_1}{\sin(180 - \beta_1 - \alpha_1)}$$

радиальная составляющая, м/с

$$c_{1m} = c_1 \cdot \sin \alpha_1$$

подача вентилятора, м/с

$$V = 3600 \cdot c_{1m} \cdot 0.25 \cdot \pi \cdot d_1^2$$

скорость перед колесом, м/с

$$c_o = \frac{4 \cdot V}{3600 \cdot \pi \cdot d_1^2}$$

относительная скорость, м/с

$$w_1 = \frac{u_1 \cdot \sin \alpha_1}{\sin(180 - \beta_1 - \alpha_1)}$$

Выход потока

окружная скорость, м/с

$$u_2 = 0.5 \cdot d_2 \cdot \omega$$

радиальная составляющая, м/с

$$c_{2m} = \frac{d_1}{d_2} \cdot c_{1m}$$

относительная скорость, м/с

$$w_2 = \frac{c_{2m}}{\sin \beta_2}$$

абсолютная скорость, м/с

$$c_2 = \sqrt{(w_2^2 + u_2^2 - 2 \cdot w_2 \cdot u_2 \cdot \cos \beta_2)}$$

$$\alpha_2 = \arcsin\left(\frac{c_{2m}}{c_2}\right)$$

окружная составляющая, м/с

$$c_{2u} = c_2 \cdot \cos \alpha_2$$

радиальная составляющая, м/с

$$c_{3m} = \frac{c_{2m}}{db_2}$$

угол β_3

$$\beta_3 = arctg\left(\frac{c_{3m}}{u_2 - c_{2u}}\right)$$

6. Исходные таблицы.

В таблицах 3 и 4 представлены исходные данные для расчета. Данные в таблице 3 для вентиляторов ВР-86-77 получены из источника [4] рис 78, стр 101, аэродинамическая схема Ц4-70, для вентиляторов с лопатками загнутыми назад. Данные в таблице 4 для вентиляторов ВР-300-45 получены из источника [4] рис 64, стр 87, аэродинамическая схема Ц14-46, для вентиляторов с лопатками загнутыми вперед.

Разница между лопатками загнутыми назад и вперед (для ВР-86-77, ВР-300-45):

- а) лопатки загнуты назад напор увеличивается расход падает ВР-86-77;
- лопатки, загнутые назад, применяются в вентиляторах с любым давлением;
- б) лопатки загнуты вперед напор увеличивается расход растет ВР-300-45.

Лопатки, загнутые вперед, применяются только в вентиляторах, для них характерны большие давления и расходы, малые размеры см. [2] стр. 133.

Вентиляторы ВР-86-77, лопатки загнуты назад								
Вентилятор	BP-86-77-2,5	BP-86-77-3,15	BP-86-77-4	BP-86-77-5	BP-86-77-6,3	BP-86-77-8		
Мощность, кВт	0.55	1,5	5,5	2,2	7,5	7,5		
Обороты, об/мин	2750	2850	2850	1420	1435	960		
Число лопаток	13	13	13	13	13	13		
Толщина лопасти, мм	1,5	1,5	2	2	2	2		
Диаметр входа D1, м	0.185	0.233	0.296	0.370	0.466	0.592		
Диаметр выхода D2, м	0.250	0.315	0.400	0.500	0.630	0.800		
Угол входа β1	16	16	16	16	16	16		
Угол выхода β2	44,7	44,7	44,7	44,7	44,7	44,7		
Ширина лопасти на входе b1, м	0.088	0.110	0.140	0.175	0.221	0.280		
Ширина лопасти на выходе b2, м	0.063	0.079	0.100	0.125	0.158	0.200		
L/P (м3/ч;Па)	850/720	1800/1220	4300/2200	4300/810	8600/1320	12000/950		
L/P (м3/ч;Па)	1750/450	4000/680	8300/1250	8600/500	17500/800	23000/580		
Коэф полного давления, ψ _{max} /ψ _{min}	0,93/0,58	0,93/0,52	1,03/0,59	0,98/0,61	1,01/0,61	0,45/0,27		

Вентиляторы ВР-300-45, лопатки загнуты вперед							
Вентилятор	BP-300-45-2	BP-300-45-2,5	BP-300-45-3,15	BP-300-45-4	BP-300-45-5	BP-300-45-6,3	BP-300-45-8
Мощность, кВт	1,5	5,5	2,2	7,5	15	22	45
Обороты, об/мин	2850	2850	1420	1430	1460	975	985
Число лопаток	34	34	34	34	34	34	34
Толщина лопасти, мм	1,5	1,5	2	2	3	3	3
Диаметр входа D1, м	0.160	0.200	0.252	0.320	0.400	0.504	0.640
Диаметр выхода D2, м	0.200	0.250	0.315	0.400	0.500	0.630	0.800
Угол входа β1	90	90	90	90	90	90	90
Угол выхода β2	135	135	135	135	135	135	135
Ширина лопасти на входе b1, м	0.100	0.125	0.158	0.200	0.250	0.315	0.400
Ширина лопасти на выходе b2, м	0.100	0.125	0.158	0.200	0.250	0.315	0.400
L/P (м3/ч;Па)	1300/1250	2400/1950	2300/800	5200/1320	9000/2200	12300/1580	24500/2600
L/P (м3/ч;Па)	2000/1950	4400/2300	5100/850	10800/1550	14500/2500	28000/1800	37000/2850
Коэф полного давления, ψ _{max} /ψ _{min}	2,35/2,26	2,35/2,77	2,67/2,51	2,90/2,47	2,87/2,52	2,92/2,56	2,81/2,56

7. Построение напорной характеристики.

Недостаточное совпадение теории с действительностью.

- а) В настоящее время расчет насосов, вентиляторов, турбин производится на основе конгруэнтного лопаткам течения жидкости, т.е. в предположении бесконечного числа лопаток потому что нет другого, пригодного инженерного способа расчета, обладающего такой же надежностью, [1].
- б) Согласно одноразмерной струйной теории безразлично, как осуществлено соединение между входной и выходной кромками лопаток. В расчете учитываются только входные и выходные углы β_1 и β_2 лопаток, [1].
- в) Условие безударного входа потока в рабочее колесо на практике не соблюдается. Удар на входе в рабочее колесо представляет собой потерю энергии давления, [1].
- г) Теоретический напор Н∞ с бесконечным числом лопаток по одноразмерной теории получается существенно меньше, чем по результатам опыта (по опытному КПД). Значит напор с конечным числом лопастей так же будет меньше действительного, [1].
- д) Формулы для учета конечного числа лопаток неточные и имеют ориентировочный характер.

Построение характеристики расчетным путем.

Построение характеристики проводится по методике Пфлейдерера К., см. [1], стр. 421. Уравнение напора в общем виде:

$$Hx = Hthx - Zhx - Zs1 - Zs2$$
, где

Hthx - теоретическая высота напора;

Zhx - потери на трение внутри всего вентилятора;

Zs1 - потери на удар на входе;

Zs2 - потери на удар на выходе.

Уравнение приводится к виду:
$$H_x = k_1 \cdot n^2 + 2 \cdot k_2 \cdot n \cdot V_x - k_3 \cdot V_x^2$$

Уравнение представляет напорную характеристику вентилятора (или насоса) при постоянном числе оборотов рабочего колеса. Коэффициенты $k_1,\ k_2,\ k_3$ являются постоянными коэффициентами для одного и того же вентилятора. Эти коэффициенты определяются длинными выражениями, поэтому для краткости записи применяются комплексы: $a_1,\ a_2 \dots$

На рисунке 3 представлен результат по уравнению Пфлейдерера, напорная характеристика для вентилятора ВР-86-77-2,5, кривая напора проходит мимо контрольных точек. Очевидно, уравнение требует корректировки. На стр. 18 представлен алгоритм преобразования трехчлена: квадратного выделение точного квадрата сжатие-растяжение ПО осям координат. На рисунке 4 представлен преобразования, кривая проходит через контрольные точки. Уравнения реагируют на изменения внешних условий: атмосферное давление, координата от уровня моря от -5000м до 5000м, температура воздуха -50°С...100°С, плотность воздуха, влажность 0...100%.

Построение напорной характеристики

теоретический напор, м

$$H_{t} = \frac{u_{2} \cdot c_{2} \cdot \cos \alpha_{2} - u_{1} \cdot c_{1} \cdot \cos \alpha_{1}}{g}$$

коэф. кривизны лопастей

$$\varphi = (1...1, 2) \cdot (1 + \sin \beta_2) \cdot \frac{d_1}{d_2}$$

коэф. конечного числа лопастей

$$p = \frac{2 \cdot \varphi}{z} \cdot \frac{1}{1 - \left(\frac{d_1}{d_2}\right)^2}$$

теоретический напор с лопастями, м

$$H_{th} = \frac{H_t}{1+p}$$

Уравнение Пфлейдерера высоты напора, м

$$H_x = k_1 \cdot n^2 + 2 \cdot k_2 \cdot n \cdot V_x - k_3 \cdot V_x^2$$

Вспомогательные комплексы

$$a_1 = \frac{\pi^2}{g \cdot 60^2}$$
; $a_2 = 1 + p$; $a_3 = a_2 \cdot ctg\alpha_3 + ctg\beta_2$;

$$a_4 = \frac{t_1}{t_1 - \sigma_1}; \ a_5 = 1 - \eta_e; \ a_6 = \pi D_1 b_1; \ a_7 = \pi D_2 b_2$$

Напорные коэффициенты

$$k_1 = a_1 \cdot \left(\frac{D_2^2}{a_2} - 0.5 \cdot \varphi \cdot D_1^2 - 0.5 \cdot \varphi \cdot \frac{D_2^2}{a_2^2}\right)$$

$$k_2 = \frac{1}{120 \cdot g} \left(-\frac{ctg\beta_2}{b_2 \cdot a_2} + \frac{\varphi \cdot a_3}{b_2 \cdot a_2} + a_4 \cdot \frac{\varphi \cdot ctg\beta_1}{b_1} \right)$$

$$k_3 = \frac{a_5}{g} \cdot \frac{a_3 \cdot ctg\alpha_3}{a_7^2} + \frac{0.5 \cdot \varphi}{g} \cdot \left(\frac{a_3}{a_2 \cdot a_7}\right)^2 + \frac{0.5 \cdot \varphi}{g} \cdot \left(\frac{a_4 \cdot ctg\beta_1}{a_6}\right)^2$$

Деформация графика

Квадратный трехчлен

$$y = ax^2 + bx + c$$

Выделение точного квадрата

$$y = a \cdot (x + \alpha)^2 + \beta$$

$$\alpha = \frac{b}{2a}$$
; $\beta = -\frac{b^2 - 4ac}{4a}$

Коэффициенты деформации

i - по ординате;

 i_1 - по абсциссе

Окончательное уравнение (прямое)

$$y = \mathbf{i} \cdot \left[a \cdot \left(\mathbf{i}_1 \cdot x + \boldsymbol{\alpha} \right)^2 + \boldsymbol{\beta} \right]$$

Обратная функция

$$x = \frac{1}{i_1} \cdot \left(\sqrt{\frac{y - i \cdot \beta}{i \cdot a}} - \alpha \right)$$

Основное уравнение высоты напора, Па

$$H_x = \rho \cdot g \cdot \left(k_1 \cdot n^2 + 2 \cdot k_2 \cdot n \cdot V_x - k_3 \cdot V_x^2\right)$$

$$H_x = -\rho \cdot g \cdot k_3 \cdot V_x^2 + 2 \cdot \rho \cdot g \cdot k_2 \cdot n \cdot V_x + \rho \cdot g \cdot k_1 \cdot n^2$$

Квадратный трехчен

$$H_r = -a \cdot V_r^2 + b \cdot V_r + c$$

$$a = \rho \cdot g \cdot k_3$$

$$b = 2 \cdot \rho \cdot g \cdot k_2 \cdot n$$

$$c = \rho \cdot g \cdot k_1 \cdot n^2$$

Приведенное уравнение

$$H_{x} = a \cdot (V_{x} + \alpha)^{2} + \beta$$

$$\alpha = \frac{b}{2a}$$

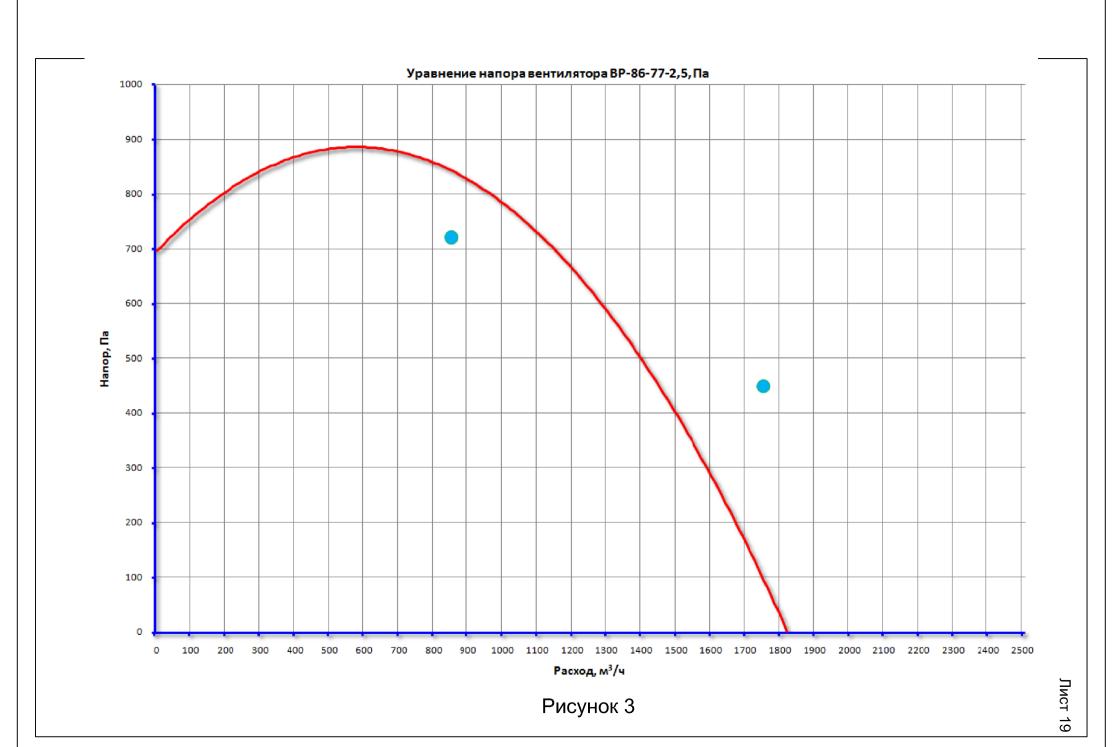
$$\beta = \frac{b^2 - 4ac}{4a}$$

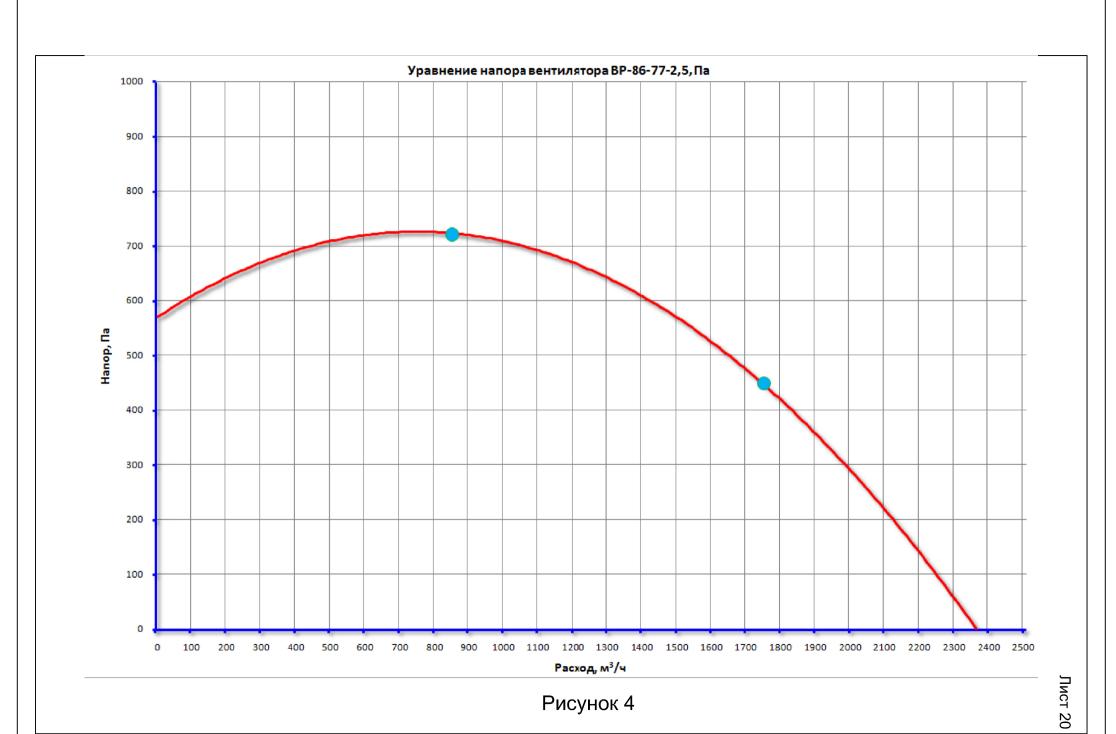
Уравнение с коэффициентами

деформации, Па

$$H_{x} = \mathbf{i} \cdot \left[a \cdot \left(\mathbf{i}_{1} \cdot V_{x} + \alpha \right)^{2} + \beta \right]$$

Обратное уравнение, м³/с

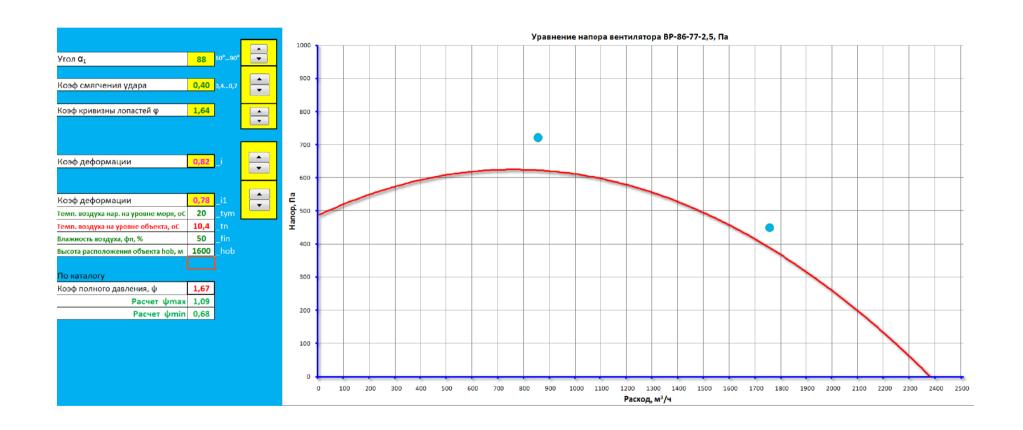

для нисходящей ветви параболы ВР-86-77-

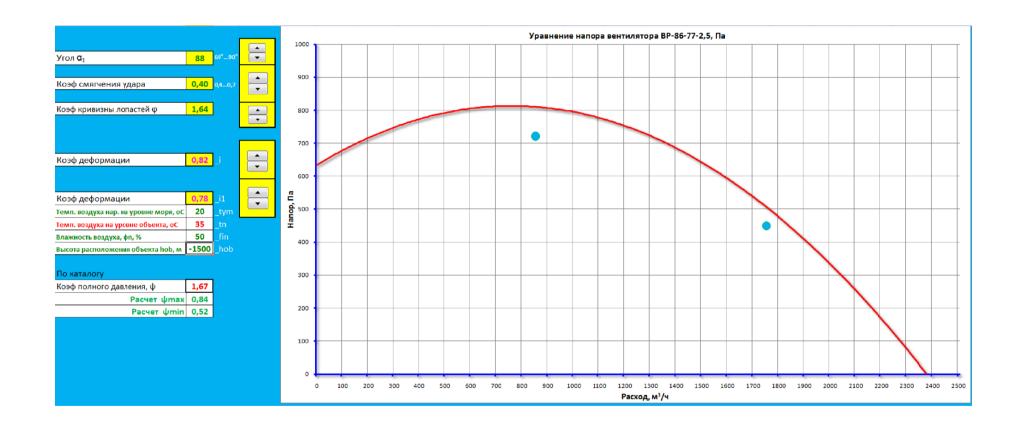

$$V_{x} = \frac{1}{\mathbf{i}_{1}} \cdot \left(\sqrt{\frac{H_{x} - \mathbf{i} \cdot \boldsymbol{\beta}}{\mathbf{i} \cdot \boldsymbol{a}}} - \boldsymbol{\alpha} \right)$$

для восходящей ветви параболы ВР-300-45-

$$V_{x} = \frac{1}{i_{1}} \cdot \left(-1 \cdot \sqrt{\frac{H_{x} - i \cdot \beta}{i \cdot a}} - \alpha \right)$$

В результате мы получаем полноценные уравнения напорной характеристики для любого центробежного вентилятора, на рабочем участке.

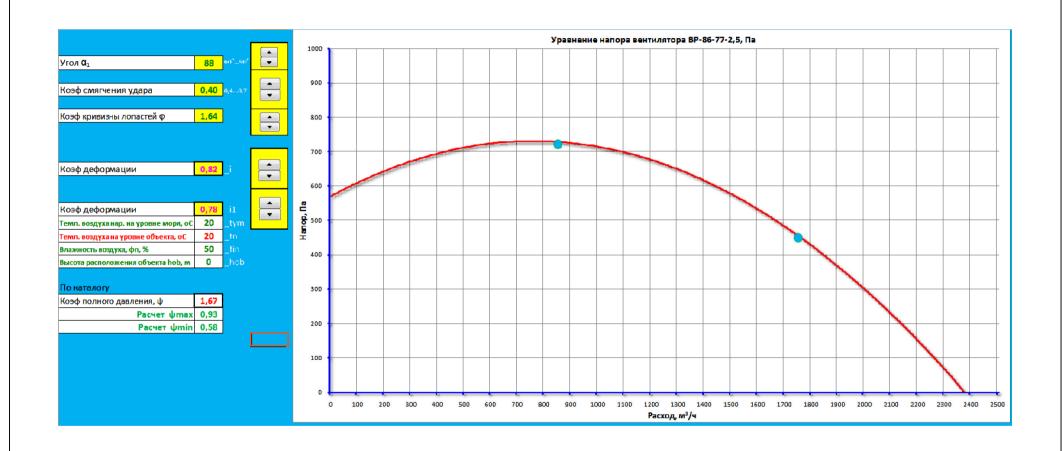


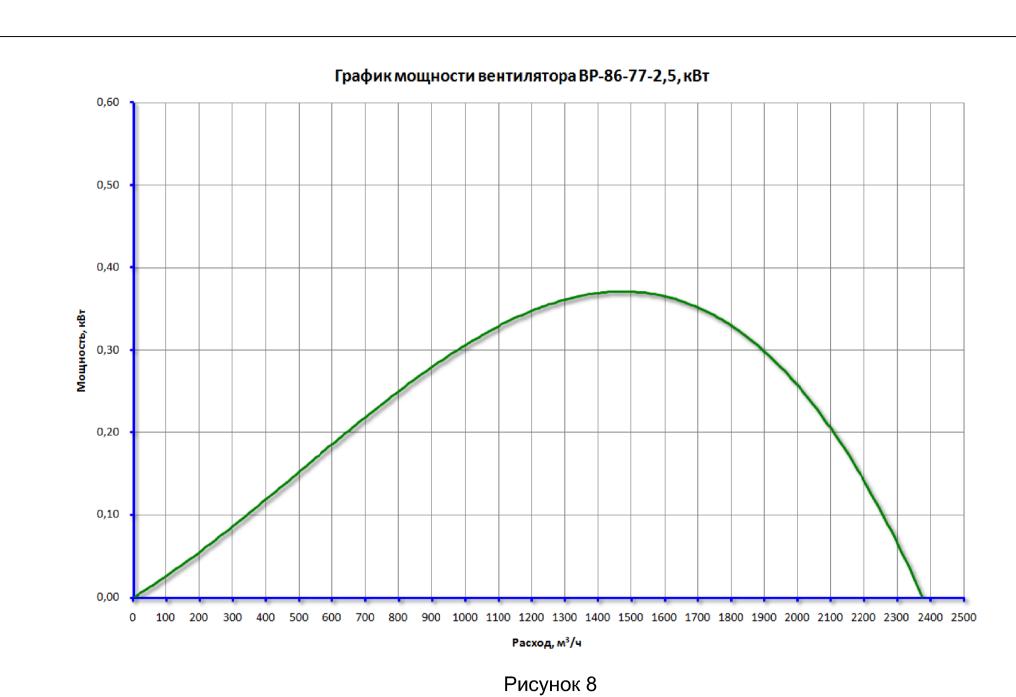

8. Влияние местоположения.

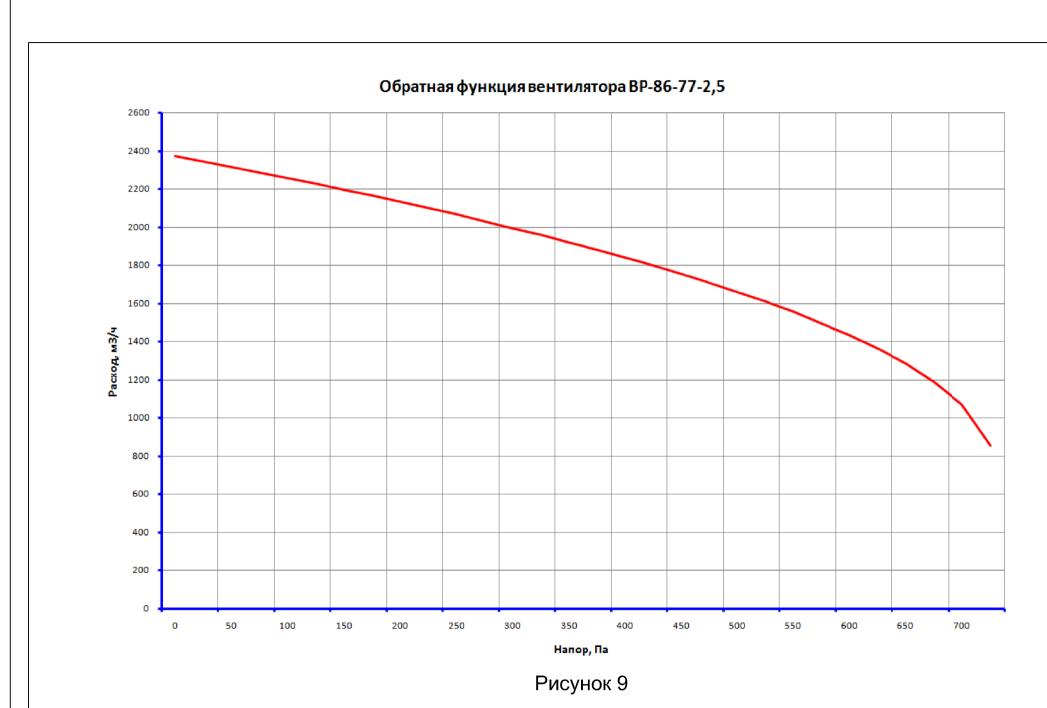
На рисунке 5 показана характеристика вентилятора BP-86-77-2,5 расположенном на высоте 1600 м над уровнем моря. На рисунке 6 характеристика вентилятора BP-86-77-2,5 расположенном в шахте на глубине 1500 м под уровнем моря.

9. Примеры расчета.

Для каждого вентилятора создается файл расчета, емкость файла составляет 300...400 килобайт. Блок-схема представляет прямолинейную цепочку формул, без условий и переходов. Файл состоит из нескольких листов, все управление расчетом располагается на листе "Управление". На лист выведены неопределенные переменные: угол α 1, коэффициент смягчения удара, коэффициент кривизны лопастей и два коэффициента деформации. Изменяя вручную эти коэффициенты получаем прямое уравнение вентилятора. Затем имея прямое уравнение находим обратное уравнение вентилятора. Далее приведены скриншоты файла вентилятора BP-86-77-2,5 с лопатками загнутыми назад и вентилятора BP-300-45-2 с лопатками загнутыми вперед.

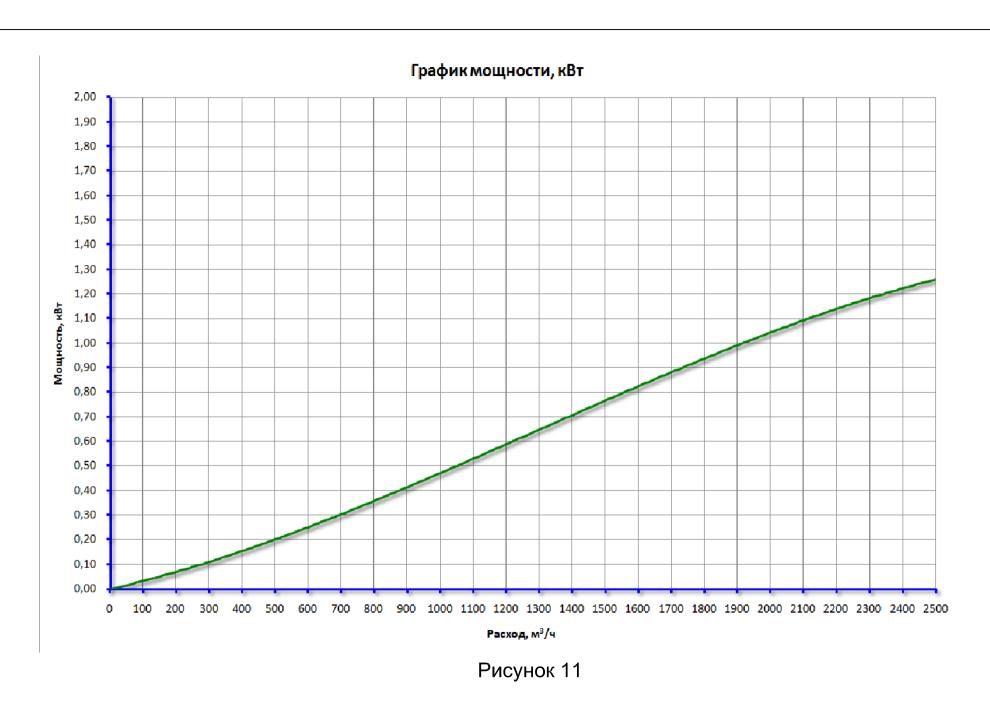





Расчет напорной характеристики вентилятора ВР-86-77-2,5

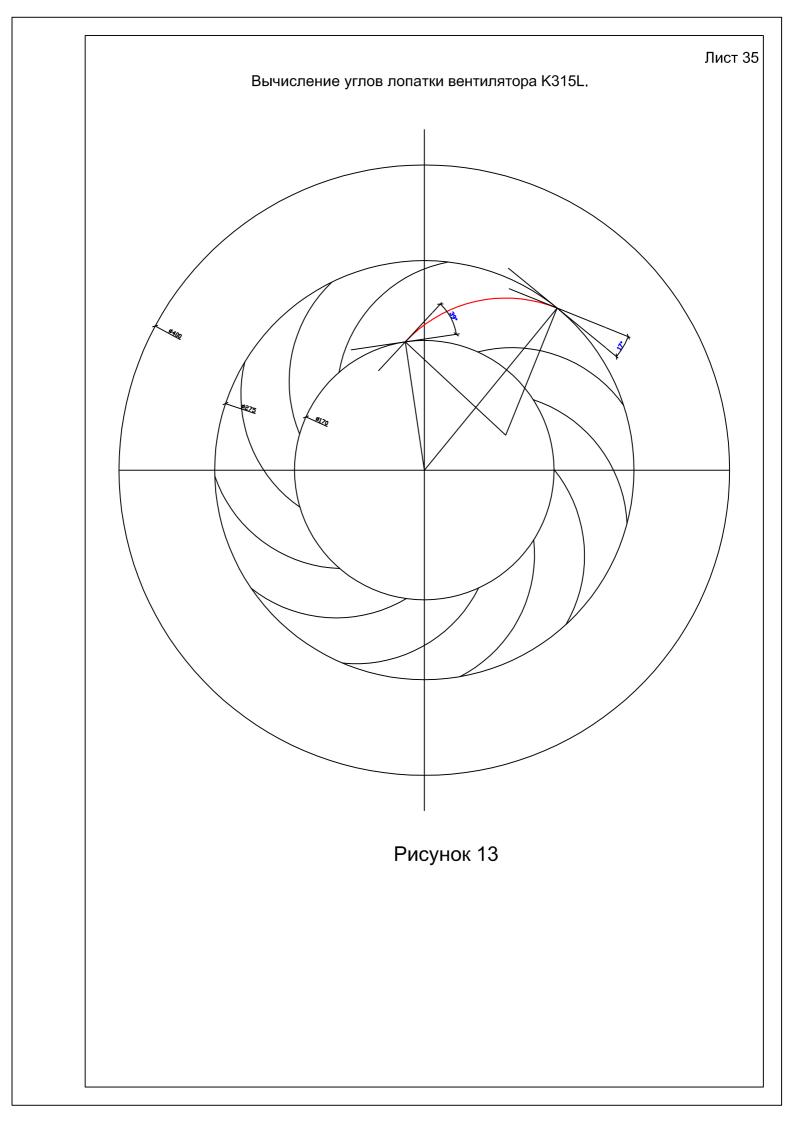
Внешние условия, мощность	
Константы	
Температура Кельвина при 0°С	273,15
Молекулярная масса воздуха, кг/(кмоль)	28,96
Молекулярная масса воды, кг/(кмоль)	18,02
Универсальная газовая постоянная, Дж/(кмоль.К)	8314,3
Газовая постоянная воздуха, Дж/(кг°С)	287,1
Ускорение свободного падения, м/с2	9,81
Переменные	
Темп. воздуха нар. на уровне моря, оС	20
Влажность воздуха, фп, %	50
Высота расположения объекта hob, м	0
Барометрическое давление на уровне моря, мм.рт.ст.	760
Счет	
Давление на уровне моря, Па	101325
Барометрическое давление на высоте hob, мм.рт.ст.	760
Барометрическое давление на высоте hob, Па	101325
Влагосодержание влажного воздуха на лин насыщ, г/кг	14,74
Влагосодержание воздуха при фп, %, г/кг	7,37
Парциальное давление воздуха, Па	2322
Плотность сух воздуха на уровне моря, кг/м ³	1,20
Плотность сухого воздуха на высоте hob, кг/м ³	1,20
Плотность влажного воздуха на высоте hob, кг/м ³	1,19
Быстроходность	133
Гидравлический КПД	0,90
Объемный КПД	0,97
Механический КПД	0,96
КПД насоса	0,84
Мощность насоса, кВт	0,24

BP-86-77-2,5	
Исходные	
Число лопастей	13
Толщина лопасти, мм	1,5
Диаметр внутренний D ₁ , м	0,185
Диаметр внешний D ₂ , м	0,250
Угол входа лопасти β1	16,0
Угол выхода лопасти β2	44,7
Ширина лопасти на входе е _{1,} м	0,088
Ширина лопасти на выходе е 2, м	0,063
Угол между абсолют и переносной α:	88
Обороты колеса, об/мин	2750
Коэф смягчения удара	0,4
Счет	
Шаг лопастей на входе, м	0,045
Толщина лопасти на входе, м	0,0054
Коэффициент стеснения на входе	1,14
Шаг лопастей на выходе, м	0,060
Толщина лопасти на выходе, м	0,0021
Коэффициент стеснения на выходе	1,04
Частота вращения ω, 1/с	288
Вход потока	
Окружная скорость входа (u1), м/с	26,64
Абсолютная скорость входа (c1), м/с	7,57
Радиальная составляющая входа (c1m), м/с	7,56
Подача вентилятора, м ² /ч	732
Скорость на всасывании перед колесом (са), м/с	7,56
Относительная скорость входа (w1), м/с	27,44
Угол атаки между потоком и углом β1	0,15
Выход потока	
Окружная скорость выхода (u2), м/с	36,0
Радиальная составляющая выхода (c2m), м/с	5,6
Относительная скорость выхода (w2), м/с	8,0
Абсолютная скорость выхода (c2), м/с	30,9
Угол между абсолют и переносной α₂	10,5
Окружная составляющая (c2u), м/с	30,3
Радиальная составляющая выхода (c3m), м/с	5,4
Угол В.	43,7
Теоретический напор, м	111
Коэффициент кривизны лопастей Ф	1,64
Коэффициент конечного числа лопастей "р"	0,56
Теоретический напор с лопастями, м	71
Построение характеристики вентилятора	
	10,1
Угол входа в спиральный корпус о₂	
Параметр в1	2,79E-04
	2,79E-04 1,56
Параметр в1 Параметр в2 Параметр в3	1,56 9,76
Параметр в 2 Параметр в 3 Параметр в 4	1,56 9,76 0,88
Параметр в 2 Параметр в 3 Параметр в 4 Параметр в 5	1,56 9,76 0,88 0,096
Параметр в 1 Параметр в 2 Параметр в 3 Параметр в 4 Параметр в 5 Параметр в 6	1,56 9,76 0,88 0,096 0,051
Параметр в 1 Параметр в 2 Параметр в 3 Параметр в 4 Параметр в 5 Параметр в 6 Параметр в 7	1,56 9,76 0,88 0,096 0,051 0,049
Параметр в 1 Параметр в 2 Параметр в 3 Параметр в 4 Параметр в 5 Параметр в 6 Параметр в 7 Коэффициент уравнения К 1	1,56 9,76 0,88 0,096 0,051 0,049 7,866-06
Параметр в 2 Параметр в 3 Параметр в 4 Параметр в 5 Параметр в 6 Параметр в 7 Коэффициент уравнения К 1 Коэффициент уравнения К 2	1,56 9,76 0,88 0,096 0,051 0,049 7,86E-06 0,037
Параметр в 1 Параметр в 2 Параметр в 3 Параметр в 4 Параметр в 5 Параметр в 6 Параметр в 7 Коэффициент уравнения К 1 Коэффициент уравнения К 2 Коэффициент уравнения К 3	1,56 9,76 0,88 0,096 0,051 0,049 7,866-06
Параметр в 1 Параметр в 2 Параметр в 3 Параметр в 4 Параметр в 5 Параметр в 6 Параметр в 7 Коэффициент уравнения К 1 Коэффициент уравнения К 2 Коэффициент уравнения К 3 Деформация графика	1,56 9,76 0,88 0,096 0,051 0,049 7,866-06 0,037 619
Параметр в 1 Параметр в 2 Параметр в 3 Параметр в 4 Параметр в 5 Параметр в 6 Параметр в 7 Коэффициент уравнения К 1 Коэффициент уравнения К 2 Коэффициент уравнения К 3 Деформация графика Коэффициент уравнения С	1,56 9,76 0,88 0,096 0,051 0,049 7,865-06 0,037 619
Параметр в 1 Параметр в 2 Параметр в 3 Параметр в 4 Параметр в 5 Параметр в 6 Параметр в 7 Коэффициент уравнения К 1 Коэффициент уравнения К 2 Коэффициент уравнения К 3 Деформация графика	1,56 9,76 0,88 0,096 0,051 0,049 7,866-06 0,037 619
Параметр в 1 Параметр в 2 Параметр в 3 Параметр в 4 Параметр в 5 Параметр в 6 Параметр в 7 Коэффициент уравнения К 1 Коэффициент уравнения К 2 Коэффициент уравнения К 3 Деформация графика Коэффициент уравнения С	1,56 9,76 0,88 0,096 0,051 0,049 7,865-06 0,037 619
Параметр в 1 Параметр в 2 Параметр в 3 Параметр в 4 Параметр в 5 Параметр в 6 Параметр в 7 Коэффициент уравнения К 1 Коэффициент уравнения К 2 Коэффициент уравнения К 3 Деформация графика Коэффициент уравнения В Коэффициент уравнения В К	1,56 9,76 0,88 0,096 0,051 0,049 7,86E-06 0,037 619 -7246,8 2375,4

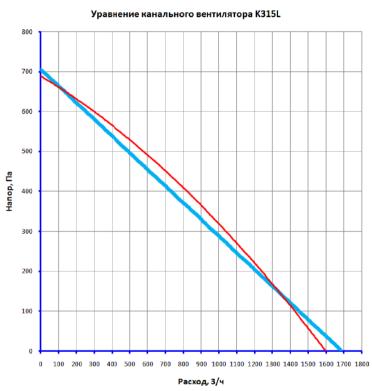


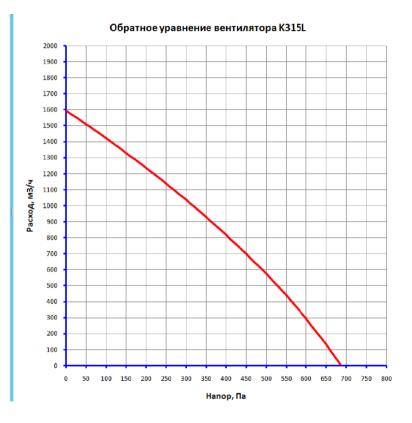
Внешние условия, мощность	
Константы	
Температура Кельвина при 0°С	273,15
Молекулярная масса воздуха, кг/(кмоль)	28,96
Молекулярная масса воды, кг/(кмоль)	18,02
Универсальная газовая постоянная, Дж/(кмоль.К)	8314,3
Газовая постоянная воздуха, Дж/(кг°С)	287,1
Ускорение свободного падения, м/с2	9,81
Переменные	
Темп. воздуха нар. на уровне моря, оС	20
Влажность воздуха, фп, %	50
Высота расположения объекта hob, м	0
Барометрическое давление на уровне моря, мм.рт.ст.	760
Счет	
Давление на уровне моря, Па	101325
Барометрическое давление на высоте hob, мм.рт.ст.	760
Барометрическое давление на высоте hob, Па	101325
Влагосодержание влажного воздуха на лин насыщ, г/кг	14,74
Влагосодержание воздуха при фп, %, г/кг	7,37
Парциальное давление воздуха, Па	2322
Плотность сух воздуха на уровне моря, кг/м ³	1,20
Плотность сухого воздуха на высоте hob, кг/м ³	1,20
Плотность влажного воздуха на высоте hob, кг/м ³	1,19
Быстроходность	289
Гидравлический КПД	0,89
Объемный КПД	0,98
Механический КПД	0,99
КПД насоса	0,87
Мощность насоса, кВт	0,28

BP-300-45-2	
	\sqcup
Исходные	\vdash
Число лопастей	34
Толщина лопасти, мм	1,5
Диаметр внутренний D ₁ , м	0,160
Диаметр внешний D ₂ , м	0,200
Угол входа лопасти β1	90
Угол выхода лопасти β2	135
Ширина лопасти на входе е 1, м	0,100
Ширина лопасти на выходе e ₂ , м	0,100
Угол между абсолют и переносной α1	33
Обороты колеса, об/мин	2850
Коэф смягчения удара	0,49
Счет	
Шаг лопастей на входе, м	0,015
Толщина лопасти на входе, м	0,0015
Коэффициент стеснения на входе	1,11
Шаг лопастей на выходе, м	0,018
Толщина лопасти на выходе, м	0,0021
Коэффициент стеснения на выходе	1,13
Частота вращения ω, 1/с	298
Вход потока	
Окружная скорость входа (u1), м/с	23,88
Абсолютная скорость входа (с1), м/с	28,47
Радиальная составляющая входа (c1m), м/с	15,51
Подача вентилятора, м ² /ч	1122
Скорость на всасывании перед колесом (са), м/с	15,51
Относительная скорость входа (w1), м/с	15,51
Угол этаки между потоком и углом β1	57,00
Выход потока	,
Окружная скорость выхода (u2), м/с	29,8
Радиальная составляющая выхода (c2m), м/с	12,4
Относительная скорость выхода (w2), м/с	17,5
Абсолютная скорость выхода (с2), м/с	44,0
Угол между эбсолют и переносной α₂	16,4
Окружная составляющая (c2u), м/с	42,2
Радиальная составляющая выхода (c3m), м/с	11,0
Угол В.	-41,5
Теоретический напор, м	70
Коэффициент кривизны лопастей Ф	1,78
Коэффициент конечного числа лопастей "р"	0,29
Теоретический напор с лопастями, м	55
Построение характеристики вентилятора	14,6
Построение характеристики вентилятора Угол входа в спиральный корпус α ₂	2.795-04
Угол входа в спиральный корпус α₃	-,
Угол входа в спиральный корпус α₂ Переметр в1 Пареметр в2	1,29
Угол входа в спиральный корпус о₃ Параметр в1 Параметр в2 Параметр в3	1,29 3,96
Угол входа в спиральный корпус о₃ Параметр в1 Параметр в2 Параметр в3 Параметр в4	1,29 3,96 0,90
Угол входа в спиральный корпус о₃ Параметр в1 Параметр в2 Параметр в3 Параметр в4 Параметр в5	1,29 3,96 0,90 0,109
Угол входа в спиральный корпус о₃ Параметр в1 Параметр в2 Параметр в3 Параметр в4 Параметр в5 Параметр в6	1,29 3,96 0,90 0,109 0,050
Угол входа в спиральный корпус о₃ Параметр в1 Параметр в2 Параметр в3 Параметр в4 Параметр в5 Параметр в6 Параметр в7	0,063
Угол входа в спиральный корпус о₃ Параметр в1 Параметр в2 Параметр в3 Параметр в4 Параметр в5 Параметр в6 Параметр в7 Коэффициент уравнения К1	0,063 5,27E-06
Угол входа в спиральный корпус о₃ Параметр в1 Параметр в2 Параметр в3 Параметр в4 Параметр в5 Параметр в6 Параметр в7 Коэффициент уравнения К1 Коэффициент уравнения К2	0,063 5,27E-06 0,019
Угол входа в спиральный корпус о₃ Параметр в1 Параметр в2 Параметр в3 Параметр в4 Параметр в5 Параметр в6 Параметр в7 Коэффициент уравнения К1	0,063 5,27E-06
Угол входа в спиральный корпус о₃ Параметр в1 Параметр в2 Параметр в3 Параметр в4 Параметр в5 Параметр в6 Параметр в7 Коэффициент уравнения К1 Коэффициент уравнения К2	0,063 5,27E-06 0,019
Угол входа в спиральный корпус о₃ Параметр в1 Параметр в2 Параметр в3 Параметр в4 Параметр в5 Параметр в6 Параметр в7 Коэффициент уразнения К1 Коэффициент уразнения К2 Коэффициент уразнения К3	0,063 5,27E-06 0,019
Угол входа в спиральный корпус о₃ Параметр а1 Параметр а2 Параметр а3 Параметр а4 Параметр а5 Параметр а6 Параметр а7 Коэффициент уравнения К1 Коэффициент уравнения К2 Коэффициент уравнения К3 Деформация графика	0,063 5,27E-06 0,019 103 -1201,7
Угол входа в спиральный корпус о₃ Параметр а1 Параметр а2 Параметр а3 Параметр а4 Параметр а5 Параметр а6 Параметр а7 Коэффициент уразнения К1 Коэффициент уразнения К2 Коэффициент уразнения К3 Деформация графика Коэффициент уразнения В Коэффициент уразнения В Коэффициент уразнения В	0,063 5,27E-06 0,019 103 -1201,7 1292,9
Угол входа в спиральный корпус α₃ Параметр а1 Параметр а2 Параметр а3 Параметр а4 Параметр а5 Параметр а6 Параметр а7 Коэффициент уравнения К1 Коэффициент уравнения К2 Коэффициент уравнения С3 Деформация графика Коэффициент уравнения С Коэффициент уравнения С	0,063 5,27E-06 0,019 103 -1201,7 1292,9 500,8
Угол входа в спиральный корпус о₃ Параметр а1 Параметр а2 Параметр а3 Параметр а4 Параметр а5 Параметр а6 Параметр а7 Коэффициент уразнения К1 Коэффициент уразнения К2 Коэффициент уразнения К3 Деформация графика Коэффициент уразнения В Коэффициент уразнения В Коэффициент уразнения В	0,063 5,27E-06 0,019 103 -1201,7 1292,9


Обратная функция вентилятора ВР 300-45-2 1000 1050 1100 1150 1200 1250 Напор, Па

10. Прямые и обратные уравнения канального вентилятора К315L.


У вентилятора снять часть корпуса, измерить: диаметры колеса, ширину и толщину лопатки, сделать фото, и по фото вычислить углы лопатки.


Рабочее колесо имеет 11 лопаток загнутых назад; мощность вентилятора - 0,32 кВт; обороты - 2318 об/мин; диаметр входа - 0,17 м; диаметр выхода - 0,275 м; ширина лопатки - 0,05 м; угол входа лопатки - 40°; угол выхода лопатки - 20°.

K315L:

$$t = 20^{\circ}\text{C}$$
; $P_{\text{бар}} = 760$ мм.рт.ст; $\varphi = 50\%$.

Прямое уравнение

с коэффициентами деформации, Πa

$$H_{x} = \mathbf{i} \cdot \left[a \cdot \left(\mathbf{i}_{1} \cdot V_{x} + \alpha \right)^{2} + \beta \right]$$

Обратное уравнение, м³/ч

$$V_{x} = 3600 \cdot \frac{1}{i_{1}} \cdot \left(\sqrt{\frac{H_{x} - i \cdot \beta}{i \cdot a}} - \alpha \right)$$

11. Проверка метода получения напорной характеристики.

Для проверки метода получения напорной характеристики использованы два канальных вентилятора ВК 100Б, фирмы ООО "АерВан", отечественного производства. С вентиляторов были сняты напорные характеристики и построена напорная характеристика изложенным методом.

Технические данные вентилятора.

Для испытаний применяются два канальных вентилятора марки ВК 100Б

Вентиляторы предназначены для перемещения чистого сухого воздуха при температуре окружающей среды -15°С ... +40°С, применяются в системах вентиляции.

Вентилятор может быть установлен в любом положении.

Корпус вентилятора выполнен из оцинкованной стали.

Рабочее колесо выполнено с загнутыми назад лопатками.

Электродвигатель с внешним ротором, однофазный, напряжение 220 В.

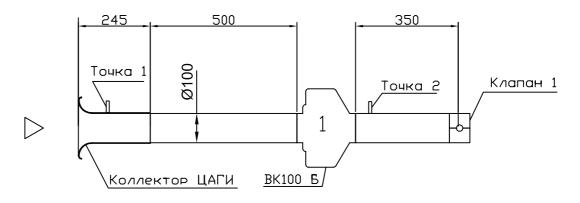
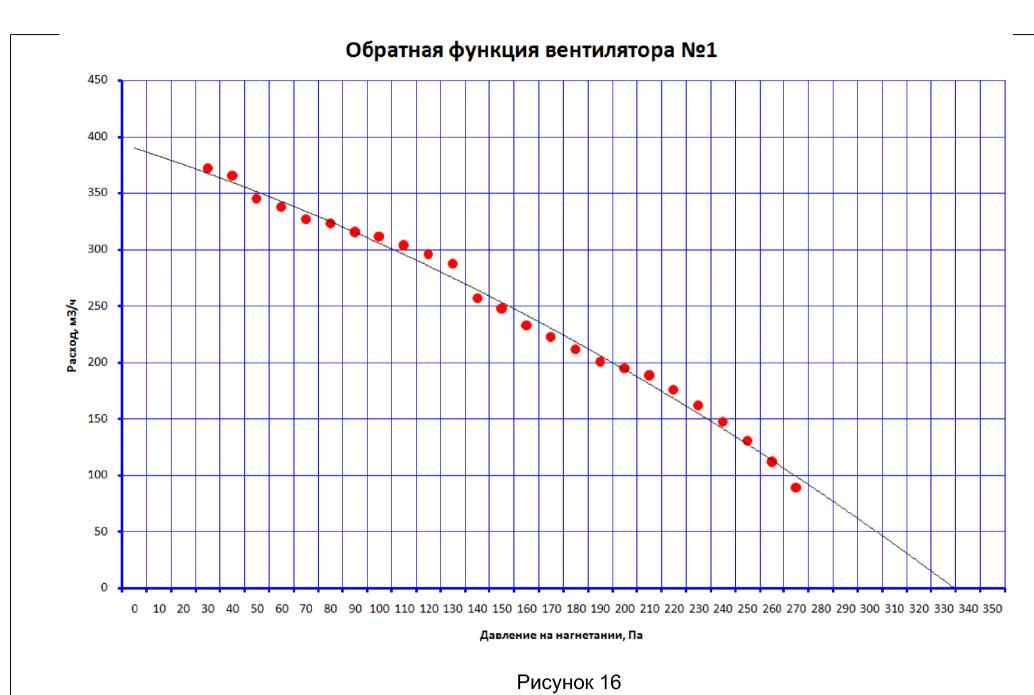
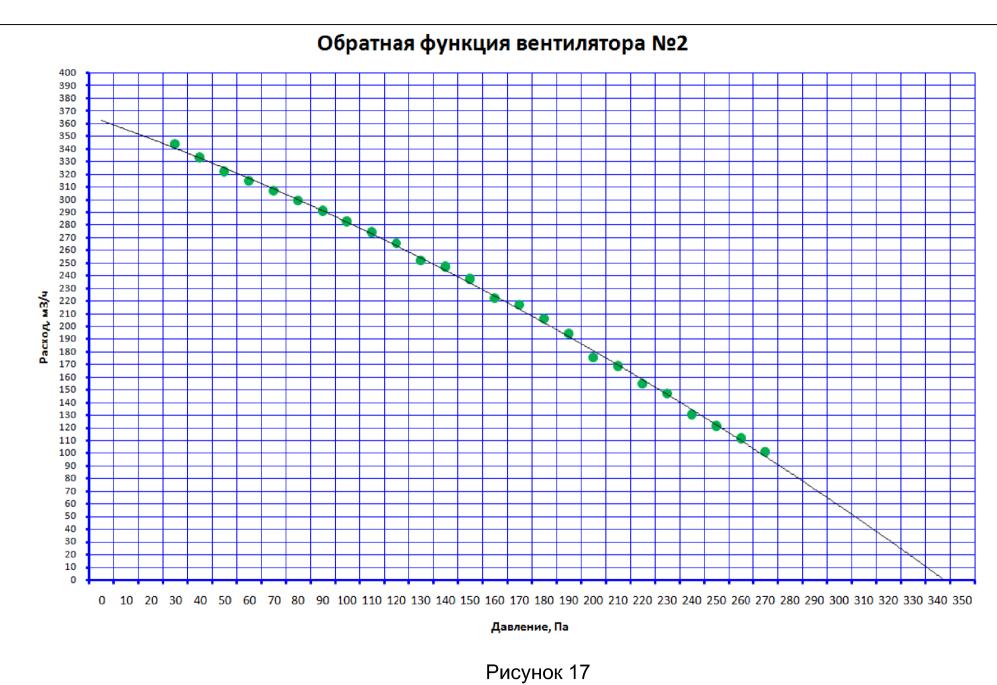
Для измерения давлений применяется отечественный дифференциальный полупроводниковый манометр с цифровой индикацией МД 1-2000.

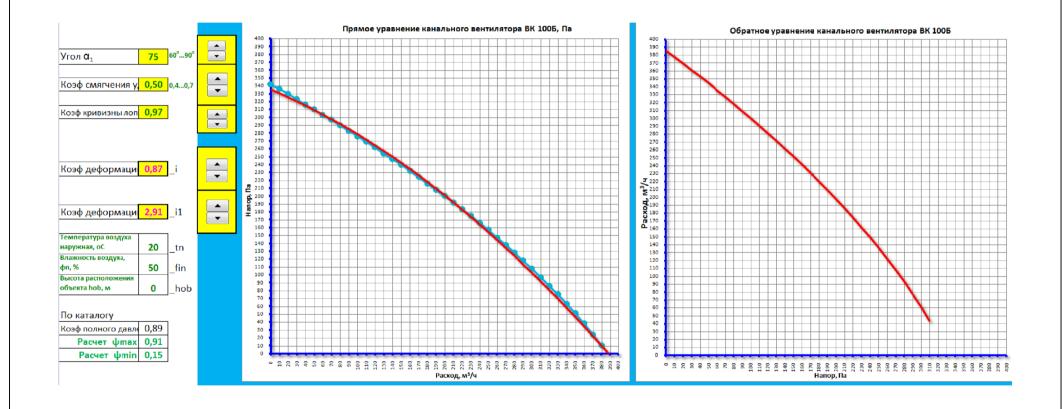
Изготовитель НПП "Инновент". Диапазон измеряемых давлений, Па: -600...+2000;

Рабочий диапазон температур, °C: 0...+80.

В комплект входит приемник воздушного давления (трубка Пито) типа ЦАГИ-ВЦННИОТ (ГОСТ 12.3018-78). Для измерений было изготовлено два коллектора ЦАГИ d = 100 мм, из пластика. Для каждого коллектра составлена функция определения скорости потока. Функция вычислена на основании непосредственных измерений по сетке (60 точек), комбинированным насадком ВЦНИИОТ. Расход изменялся пятиступенчатым регулятором частоты вращения VRTE 1.5. Проведено 3 серии по 5 измерений (всего измерено 450 точек). Затем произведена апроксимация по методу наименьших квадратов и найдена функция коллектора. На рисунке 15 представлена схема установки для снятия характеристики канального вентилятора ВК 100Б, ниже приложено фото.

Рабочее колесо имеет 16 лопаток загнутых назад; мощность вентилятора - 0,08 кВт; обороты - 2460 об/мин; диаметр входа - 0,115 м; диаметр выхода - 0,185 м; ширина лопатки - 0,045 м; угол входа лопатки - 60°; угол выхода лопатки - 25°.


Рисунок 15

Лист 41

ВК 100Б:

$$t = 20^{\circ}\text{C}$$
; $P_{\text{6ap}} = 760 \text{ mm.pt.ct}$; $\varphi = 50\%$.

Прямое уравнение

с коэффициентами деформации, Па

$$H_{x} = \mathbf{i} \cdot \left[a \cdot \left(\mathbf{i}_{1} \cdot V_{x} + \boldsymbol{\alpha} \right)^{2} + \boldsymbol{\beta} \right]$$

Обратное уравнение, M^3/Ψ

$$V_{x} = 3600 \cdot \frac{1}{i_{1}} \cdot \left(\sqrt{\frac{H_{x} - i \cdot \beta}{i \cdot a}} - \alpha \right)$$

Результаты представлены на рисунках 16, 17, 18. Очевидно расчетная кривая точно ложится на опытную. Но в отличии от опытной характеристики, расчетная кривая - "живая", она передвигается по координатному полю в зависимости от внешних условий!

12. Ряд вентиляторов.

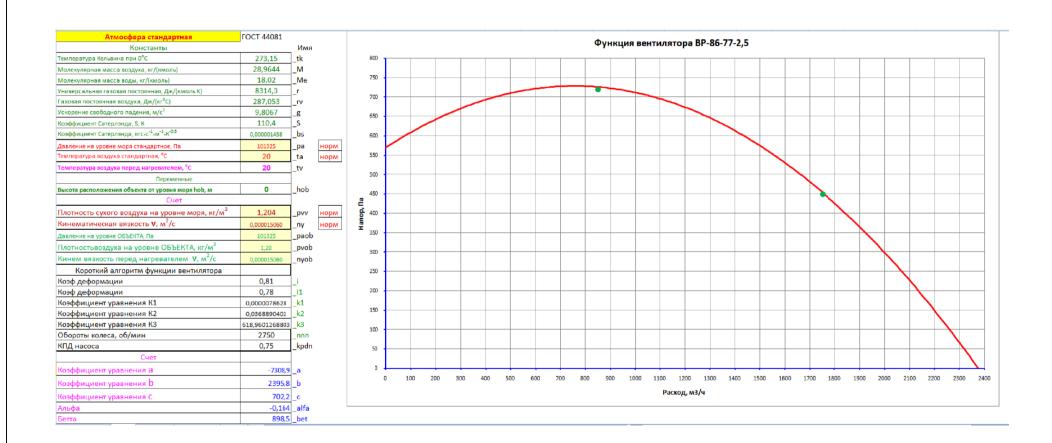
Из всего многообразия вентиляторов я составил ограничительный ряд (1998 год), для собственного использования при проектировании. Принцип отбора вентиляторов: известные фирмы изготовители, компактность, максимальная мощность в размере, максимальная производительность, минимальная стоимость. Всего набралось 31 вентилятор, они охватывают равномерный диапазон расхода 100...37000 м³/ч. Затем для каждого вентилятора я составил прямые и обратные функции. Этими вентиляторами я пользуюсь более 20 лет.

Вентиляторы ВР 86-77-....

Вентилятры ВР 86-77-... имеют рабочее колесо с лопатками загнутыми назад. Данные в таблице 1 и 2 для вентиляторов ВР-86-77 получены из источника [4] рис 78, стр 101, аэродинамическая схема Ц4-70. Для каждого вентилятора создается файл: короткий алгоритм вентилятора см. рисунок 19. Алгоритм реагирует на изменения следующих параметров: температуры воздуха, высоты от уровня моря, атмосферного давления, частоты вращения рабочего колеса. Мы получаем полноценные уравнения прямых и обратных напорных характеристик вентиляторов. Этот алгоритм можно вставлять в любые алгоритмы, в которых присутствует вентилятор.

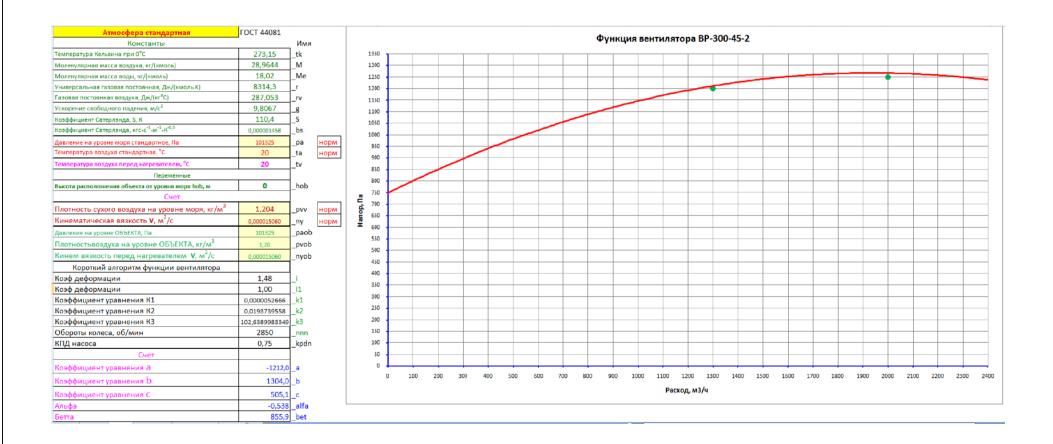
Вентиляторы ВР 300-45-....

Вентилятры ВР 300-45-... имеют рабочее колесо с лопатками загнутыми вперед. Данные в таблице 3 и 4 для вентиляторов ВР 300-45 получены из источника [4] рис 67, стр 87, аэродинамическая схема Ц14-46. Для каждого вентилятора создается файл: короткий алгоритм вентилятора см. рисунок 20.

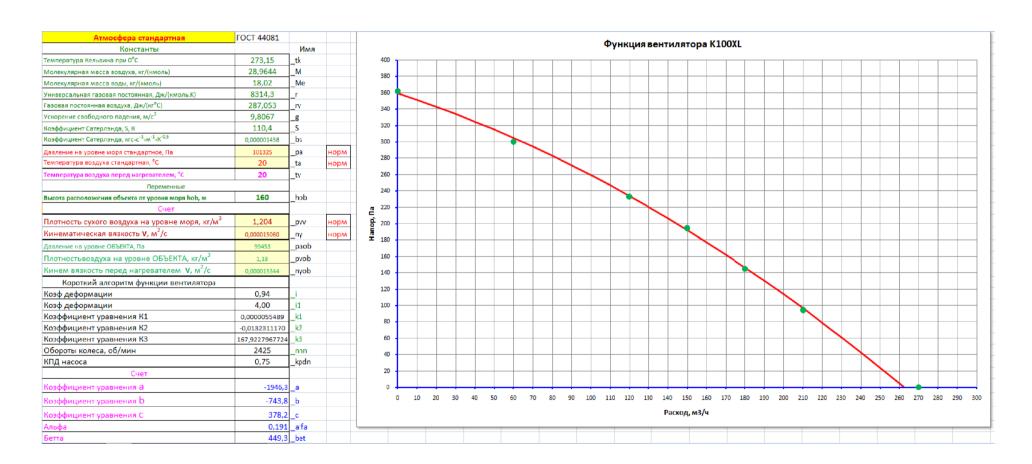

Круглые канальные вентиляторы Systemair.

В отличие от вентиляторов ВР для канальных вентиляторов нет геометрических размеров рабочих колес, но есть отличные графики см. [9]. Для нахождения уравнений приходится поступать формально и принимать геометрические размеры колес по источнику [4].

Вентилятры К100...К315L имеют рабочее колесо с лопатками загнутыми назад. Данные в таблице 5 и 6 для круглых вентиляторов получены из источника [4] рис 78, стр 101, аэродинамическая схема Ц4-70. Для каждого вентилятора создается файл: короткий алгоритм вентилятора см. рисунок 21.


Исходные для короткого алгоритма центробежных вентиляторов. Таблица 1									
Аэродинамическая схема	Ц4-70 [2] ри	с 78, стр 101	Коле	есо с лопаткам	и загнутыми на	азад			
Марка вентилятора	BP-86-77-2,5	BP-86-77-3,15	BP-86-77-4	BP-86-77-5	BP-86-77-6,3	BP-86-77-8			
Коэф деформации _i	0,81	0,80	0,85	0,80	0,82	0,38			
Коэф деформации _ <mark>i1</mark>	0,78	0,75	0,76	0,71	0,72	1,10			
Коэф уравнения _k1	0,0000078628	0,0000124925	0,0000201276	0,0000290419	0,0000461442	0,0000812248			
Коэф уравнения _ <mark>k2</mark>	0,0368890402	0,0292765828	0,0276633799	0,0241482428	0,0190885659	0,0118285434			
Коэф уравнения _ <mark>k3</mark>	618,9601268803	240,5702578375	102,1297767632	41,9474318739	16,2726526571	5,4528444807			
Обороты колеса, об/мин _nnn	2750	2850	2850	1420	1435	960			
КПД вентилятора _kpdn	0,75	0,75	0,75	0,75	0,75	0,75			

Точки рабочего диапазона радиальных вентиляторов. Таблица 2						
Вентилятор	Lч, м ³ /ч	Нх, Па	Вентилятор	Lч, м ³ /ч	Нх, Па	
DD 06 77 3 F	850	720	BP-300-45-2	1300	1200	
BP-86-77-2,5	1750	450	DF-300-43-2	2000	1250	
Вентилятор	Lч, м ³ /ч	Нх, Па	Вентилятор	Lч, м ³ /ч	Нх, Па	
BP-86-77-3,15	1800	1220	BP-300-45-2,5	2400	1950	
BF-60-77-3,13	4000	680	BP-300-43-2,3	4400	2300	
Вентилятор	Lч, м ³ /ч	Нх, Па	Вентилятор	Lч, м ³ /ч	Нх, Па	
BP-86-77-4	4300	2200	BP-300-45-3.15	2300	800	
DP-00-77-4	8300	1250	BP-300-43-3,13	5100	850	
Вентилятор	Lч, м ³ /ч	Нх, Па	Вентилятор	Lч, м ³ /ч	Нх, Па	
BP-86-77-5	4300	810	BP-300-45-4	5200	1320	
DP-60-77-3	8600	500	DP-300-45-4	10800	1550	
Вентилятор	Lч, м³/ч	Нх, Па	Вентилятор	Lч, м³/ч	Нх, Па	
BP-86-77-6.3	8600	1320	BP-300-45-5	9000	2200	
DP-80-77-0,3	17500	800	DP-300-45-5	14500	2500	
Вентилятор	Lч, м³/ч	Нх, Па	Вентилятор	Lч, м³/ч	Нх, Па	
BP-86-77-8	12000	950	BP-300-45-6,3	12300	1580	
DF-60-77-6	23000	580	BF-300-43-0,3	28000	1800	
			Вентилятор	Lч, м³/ч	Нх, Па	
			BP-300-45-8	24500	2600	
		BP-300-45-8		37000	2850	


Исходные для короткого алгоритма центробежных вентиляторов. Таблица 3.								
Аэродинамическая схема	Ц14-46 [2] р	Ц14-46 [2] рис 64, стр 87		Колесо с ло	патками загнут	ыми вперед		
Марка вентилятора	BP-300-45-2	BP-300-45-2,5	BP-300-45-3,15	BP-300-45-4	BP-300-45-5	BP-300-45-6,3	BP-300-45-8	
Коэф деформации _i	1,48	1,25	1,65	1,65	1,70	1,70	1,85	
Коэф деформации _i1	1,00	2,19	1,55	1,00	1,00	1,00	0,67	
Коэф уравнения <u>k1</u>	0,0000052666	0,0000091441	0,0000182924	0,0000191245	0,0000313554	0,0000487306	0,0000994234	
Коэф уравнения _k2	0,0193739558	0,0089598314	0,0122253997	0,0091390018	0,0076005273	0,0065523381	0,0027559206	
Коэф уравнения <u>_k3</u>	102,6389983349	7,4628755841	14,8737321056	4,0982196100	1,8733988403	0,9105355440	0,0484463565	
Обороты колеса, об/мин _nnn	2850	2850	1400	1430	1460	975	985	
КПД вентилятора <u>kpdn</u>	0,75	0,75	0,75	0,75	0,75	0,75	0,75	

To	чки рабочего ді	иапазона ради	альных вентиля	торов. Таблица	a 4.
Вентилятор	Lч, м³/ч	Нх, Па	Вентилятор	Lч, м³/ч	Нх, Па
BP-86-77-2,5	850	720	BP-300-45-2	1300	1200
BP-00-77-2,3	1750	450	BF-300-43-2	2000	1250
Вентилятор	Lч, м³/ч	Нх, Па	Вентилятор	Lч, м³/ч	Нх, Па
BP-86-77-3,15	1800	1220	BP-300-45-2,5	2400	1950
BP-80-77-3,13	4000 680	4400	2300		
Вентилятор	Lч, м³/ч	Нх, Па	Вентилятор	Lч, м³/ч	Нх, Па
BP-86-77-4	4300	2200	BP-300-45-3.15	2300	800
DF-60-77-4	8300	1250	BY-300-43-3,13	5100	850
Вентилятор	Lч, м³/ч	Нх, Па	Вентилятор	Lч, м³/ч	Нх, Па
BP-86-77-5	4300	810	DD 200 45 4	5200	1320
BP-60-77-3	8600	500	BP-300-45-4	10800	1550
Вентилятор	L4, M³/4	Нх, Па	Вентилятор	Lu, m³/u	Нх, Па
BP-86-77-6,3	8600	1320	BP-300-45-5	9000	2200
BP-80-77-0,3	17500	800	BP-300-43-3	14500	2500
Вентилятор	Lч, м³/ч	Нх, Па	Вентилятор	Lч, м³/ч	Нх, Па
BP-86-77-8	12000	950	BP-300-45-6,3	12300	1580
DP-80-77-8	23000	580	DP-300-43-0,3	28000	1800
			Вентилятор	Lч, м³/ч	Нх, Па
			BP-300-45-8	24500	2600
		BP-300-45-8		37000	2850

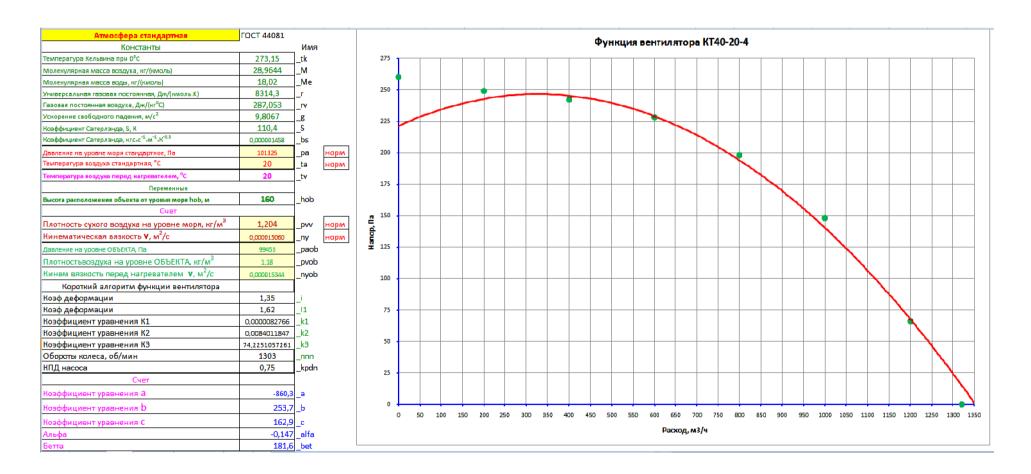
Исходные для ко	роткого алгори	ника крупль	ix kana/ibnbi	х вентилято	ров. таолис	ļα J.
Аэродинамическая схема	Ц4-70 [2] ри	іс 78, стр 101	Кол	есо с лопаткам	и загнутыми <mark>на</mark>	вад
Марка вентилятора	K100XL	K125XL	K160XL	K200L	K250L	K315L
Коэф деформации _i	0,94	0,72	0,72	0,75	0,63	0,95
Коэф деформации _i1	4,00	4,16	2,35	2,24	2,58	1,06
Коэф уравнения _k1	0,0000055489	0,0000066895	0,0000076454	0,0000089590	0,0000102294	0,0000445595
Коэф уравнения _k2	-0,0132311170	-0,0167480251	-0,0113513802	-0,0104949435	-0,0064222954	-0,0157871868
Коэф уравнения <u>_k3</u>	167,9227967724	56,1654414917	90,2928561054	79,3419666645	103,5946883480	108,6643680255
Обороты колеса, об/мин _nnn	2425	2483	2553	2630	2641	2318
КПД вентилятора kpdn	0,75	0,75	0,75	0,75	0,75	0,75

	Опытная кривая круглых канальных вентиляторов. Таблица б.						
	Lu, m³/u	Нх, Па		Lu, m³/u	Нх, Па		
	0	362		0	420		
	60	300		100	388		
	120	233		200	349		
K100XL	150	194	K160XL	300	300		
	180	145		400	244		
	210	94		500	179		
	270	0		600	119		
				750	0		
	Lч, м³/ч	Нх, Па		Lu, m³/u	Нх, Па		
	0	350		0	542		
	100	264	K200L	200	476		
K125XL	200	154		400	385		
	300	53		600	272		
	350	0		800	136		
				970	0		
	Lч, м³/ч	Нх, Па		Lч, м³/ч	Нх, Па		
	0	532		0	734		
	200	472		300	619		
K250L	400	397	K315L	600	491		
NZJUL	600	287	KJIJE	900	368		
	800	138		1200	249		
	960	0		1500	120		
				1730	0		

Прямоугольные канальные вентиляторы Systemair тип КТ.

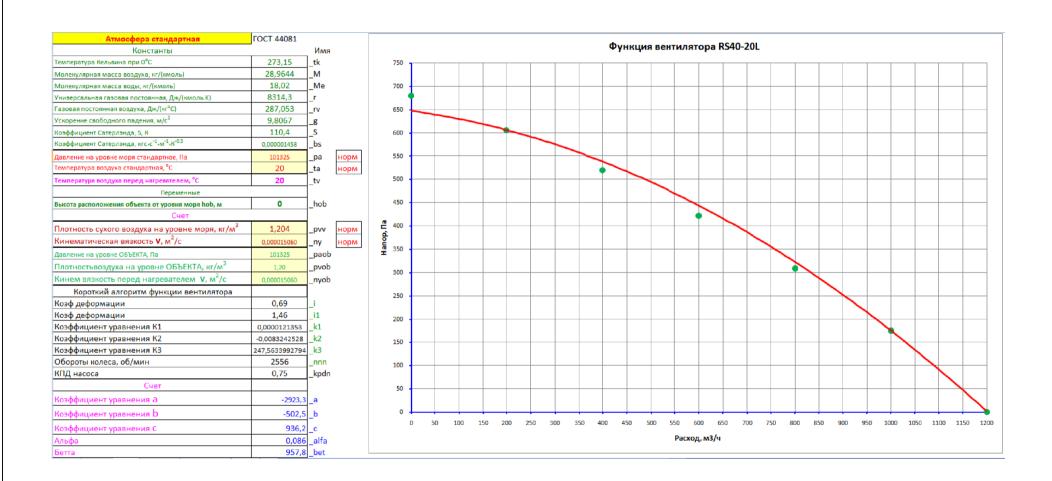
В отличие от вентиляторов ВР для канальных вентиляторов нет геометрии рабочих колес, но есть отличные графики см. [9]. Для нахождения уравнений приходится поступать формально и принимать геометрические размеры колес по источнику [4].

Вентиляторы КТ имеют рабочее колесо с лопатками загнутыми вперед. Вентиляторы КТ80-50-... и выше имеют ограниченный рабочий диапазон, поэтому они не входят в таблицу 7. Данные в таблице 7 и 8 для прямоугольных вентиляторов КТ получены из источника [4] рис 67, стр 87, аэродинамическая схема Ц14-46. Для каждого вентилятора создается файл: короткий алгоритм вентилятора см. рисунок 22.


Прямоугольные канальные вентиляторы Systemair тип RS.

В отличие от вентиляторов ВР для канальных вентиляторов нет геометрии рабочих колес, но есть отличные графики см. [9]. Для нахождения уравнений приходится поступать формально и принимать геометрические размеры колес по источнику [4].

Вентилятры RS имеют рабочее колесо с лопатками загнутыми назад. Вентиляторы RS имеют ничем не ограниченный рабочий диапазон, повышенное давление. Данные в таблице 9 и 10 для прямоугольных вентиляторов RS получены из источника [4] рис 78, стр 101, аэродинамическая схема Ц4-70. Для каждого вентилятора создается файл: короткий алгоритм вентилятора см. рисунок 23.


Исходные для короткого алгоритма прямоугольных канальных вентиляторов. Таблица 7.								
Аэродинамическая схема	Ц14-46 [2] р	ис 64, стр 87	Коле	со с лопатками	и загнутыми <mark>вп</mark>	еред		
Марка вентилятора	KT40-20-4	KT50-25-4	KT50-30-4	KT60-30-4	KT60-35-4	KT70-40-4		
Коэф деформации _i	1,35	1,15	0,92	0,68	0,65	0,95		
Коэф деформации <u>i1</u>	1,62	1,98	2,21	3,21	3,13	1,06		
Коэф уравнения <u>_k1</u>	0,0000082766	0,0000126937	0,0000215403	0,0000276966	0,0000458334	0,0000445595		
Коэф уравнения <u>k2</u>	0,0084011847	0,0074888059	0,0043896463	0,0091718929	0,0075263861	-0,0157871868		
Коэф уравнения <u>k</u> 3	74,2251057261	35,4263229287	20,0506323804	12,1310187477	7,6014281279	108,6643680255		
Обороты колеса, об/мин _nnn	1303	1287	1272	1279	1250	2318		
КПД вентилятора <u>kpdn</u>	0,75	0,75	0,75	0,75	0,75	0,75		

Опыт	ная кривая пря	моугольных ка	нальных вент	иляторов. Табл	ица 8.
	Lч, м³/ч	Нх, Па		Lч, м³/ч	Нх, Па
	0	260		0	450
	200	249		1000	444
	400	242		1500	433
KT40-20-4	600	228	KT60-30-4	2000	395
	800	198		2500	314
	1000	148		3000	176
	1200	66		3400	0
	1320	0			
	Lч, м³/ч	Нх, Па		Lч, м³/ч	Нх, Па
	0	315		0	532
	500	310	KT60-35-4	200	472
	1000	280		400	397
KT50-25-4	1500	181		600	287
K130 23 4	1800	69	K100 33 4	800	138
	1950	0		960	0
	Lч, м³/ч	Нх, Па		Lu, m³/u	Нх, Па
	0	427		0	734
	500	393		300	619
KT50-30-4	1000	356	KT70-40-4	600	491
K150-30-4	1500	300	1175-40-4	900	368
	2000	206		1200	249
	2500	57		1500	120
	2650	0		1730	0

Аэродинамическая схема	Ц4-70 [2] ри	с 78, стр 101	Колесо с лопатками загнутыми назад			
Марка вентилятора	R540-20L	RS50-25	RS60-35L3	R570-40L3	RS80-50L3	RS100-50L3
Коэф деформации _i	0,69	0,73	0,44	0,57	0,55	0,95
Коэф деформации _i1	1,46	1,35	2,34	1,39	1,48	1,06
Коэф уравнения <u>k1</u>	0,0000121353	0,0000189898	0,0000294735	0,0000411512	0,0000458334	0,0000702004
Коэф уравнения <u>k2</u>	-0,0083242528	-0,0065494953	-0,0048070702	0,0024598469	0,0075263861	-0,0023527220
Коэф уравнения _k3	247,5633992794	85,0319119920	51,1737290225	26,2388340346	7,6014281279	7,8167443540
Обороты колеса, об/мин _nnn	2556	1362	1408	1410	1383	1361
КПД вентилятора _kpdn	0,75	0,75	0,75	0,75	0,75	0,75

Опы	гная кривая пряг	моугольных ка	нальных венті	иляторов. Табли	ща 10.
011311	Lu, m³/u	нх, Па		Lu, m³/u	Нх, Па
	0	680		0	552
	200	606		1000	542
	400	520		2000	475
RS40-20L	600	422	RS70-40L3	3000	360
	800	309		4000	198
	1000	175		5000	0
	1200	0			
	Lu, m³/u	Нх, Па		L4, M ³ /4	Нх, Па
	0	310		0	870
	200	289		2000	804
	400	262	RS80-50L3	4000	654
	600	231		6000	439
RS50-25	800	192		8000	187
	1000	141		9400	0
	1200	79			
	1400	21			
	1500	0			
	Lч, м³/ч	Нх, Па		Lu, m³/u	Нх, Па
	0	577		0	1000
	1000	512		2000	960
RS60-35L3	2000	406	RS100-50L3	4000	862
M300-33E3	3000	257	N3100-30E3	6000	715
	4000	67		8000	521
	4250	0		10000	287
				12000	0

Условные обозначения основных величин.

Константы

Температура Кельвина при 0°C

 $t_k = 273.15^o$

Молекулярная масса воздуха, кг/(кмоль)

Me = 18,02

Молекулярная масса воды, кг/(кмоль)

M = 28,9644

Универсальная постоянная воздуха, $\frac{\mathcal{Д} \mathcal{ж}}{\kappa \text{моль} \cdot K}$

r = 8314.3

Газовая постоянная воздуха, $\frac{\mathcal{Д} \mathcal{H}}{\kappa_{\mathcal{E}} \cdot {}^{o}C}$

 $r_v = 287.053$

Ускорение свободного падения, M/c^2

g = 9,8067

Коэффициент Сатерлэнда, К

S = 110.4

Коэффициент Сатерлэнда, кгс \cdot с $^{-1}$ \cdot м $^{-1}$ \cdot К $^{-0,5}$

bs = 0.000001458

Норм. атмосферное давление, Па

 $p_a = 101325$

Норм. температура воздуха, °С

 $t_a = 20$

Переменные

Температура воздуха перед нагревателем, °C

 t_{v}

Координата объекта от уровня моря, м

 $h_{ob} = \pm 3000$

Норм. атмосферное давление, Па

$$p_a = 101325$$
, при $t_a = 20^{\circ} C$

Плотность воздуха на уровне моря, $\kappa \Gamma / M^3$

$$\rho_{M} = \frac{p_{a}}{r_{v} \cdot \left(t_{k} + t_{a}\right)}$$

Кинематическая вязкость на уровне моря, м 2 / c

$$\upsilon_{ob} = \frac{\beta_s \cdot (t_k + t_a)^{\frac{3}{2}}}{(t_k + t_a + S) \cdot \rho_M}$$

Атмосферное давление

на уровне объекта

$$p_{hob} = \mathbf{p_a} \cdot e^{\frac{-M \cdot g \cdot h_{ob}}{r \cdot (t_v + t_k)}}, \Pi a$$

Плотность воздуха, $\kappa \Gamma/M^3$

$$\rho_{ob} = \frac{p_{hob}}{r_{v} \cdot (t_{k} + t_{v})}$$

Кинематическая вязкость, M^2 / c

$$\upsilon_{ob} = \frac{\beta_s \cdot (t_k + t_v)^{\frac{3}{2}}}{(t_k + t_v + S) \cdot \rho_{ob}}$$

Короткий алгоритм вентилятора

Постоянные:

$$i, i_1, k_1, k_2, k_3, g.$$

Переменные:

 n, ρ_{ob} .

Уравнение высоты напора, Па

$$H_x = -\rho_{ob} \cdot \mathbf{g} \cdot \mathbf{k}_3 \cdot V_x^2 + 2 \cdot \rho_{ob} \cdot \mathbf{g} \cdot \mathbf{k}_2 \cdot \mathbf{n} \cdot V_x + \rho_{ob} \cdot \mathbf{g} \cdot \mathbf{k}_1 \cdot \mathbf{n}^2$$

Квадратный трехчен

$$H_x = -a \cdot V_x^2 + b \cdot V_x + c$$

$$a = \rho_{ob} \cdot g \cdot k_3$$

$$b = 2 \cdot \rho_{ob} \cdot g \cdot k_2 \cdot n$$

$$c = \rho_{ob} \cdot g \cdot \mathbf{k}_1 \cdot n^2$$

Приведенное уравнение

$$H_x = a \cdot (V_x + \alpha)^2 + \beta$$

$$\alpha = \frac{b}{2a}$$

$$\beta = \frac{b^2 - 4ac}{4a}$$

Прямое уравнение с

коэффициентами деформации, Па

$$H_{x} = \mathbf{i} \cdot \left[a \cdot \left(\mathbf{i}_{1} \cdot V_{x} + \alpha \right)^{2} + \beta \right]$$

Обратное уравнение, м³/с

для нисходящей ветви параболы

$$V_{x} = \frac{1}{\mathbf{i}_{1}} \cdot \left(\sqrt{\frac{H_{x} - \mathbf{i} \cdot \boldsymbol{\beta}}{\mathbf{i} \cdot \boldsymbol{a}}} - \boldsymbol{\alpha} \right)$$

для восходящей ветви параболы

$$V_{x} = \frac{1}{\mathbf{i}_{1}} \cdot \left(-1 \cdot \sqrt{\frac{H_{x} - \mathbf{i} \cdot \boldsymbol{\beta}}{\mathbf{i} \cdot \boldsymbol{a}}} - \boldsymbol{\alpha} \right)$$

14. Заключение.

Уравнение Пфлейдерера дает положительные результаты независимо от корпуса вентилятора и таким образом подходит для вентиляторов различной конструкции: в корпусе Рейнольдса (спиральном), канальном круглом, прямоугольном. Но следует учитывать, что на малых расходах действительные напорные кривые могут иметь перегибы: "...полученная таким образом напорная характеристика ... дает достаточное приближение только в области нормальных и повышенных подач." [1] стр. 443.

Также следует учесть, что у каждого пользователя при работе с данной методикой будут получаться различные уравнения (коэффициенты), то есть нельзя получить совершенно одинаковые уравнения, так как гидроаэромеханика гораздо сложнее механики твердого тела. Но зато результаты по полученным уравнениям будут равноценны характеристикам вентиляторов.

В результате мы получаем полноценные уравнения напорной характеристики для любого центробежного вентилятора, на рабочем участке. Уравнения реагируют на изменения внешних условий: атмосферное давление, координата от уровня моря от -5000м до 5000м, температура воздуха -50°С...100°С, плотность воздуха, влажность 0...100%.

Высота над уровнем моря озер и водохранилищ СССР. Таблица 1.						
Регион	Озеро	Высота, м				
Урал	Тургояк	320				
	Зюраткуль	724				
Алтай	Джулукуль	2200				
	Телецкое	437				
Киргизия	Иссык-куль	1600				
Кавказ	Казеной Ам	1869				
	Сылтранкуль	3000				
	Азау	3350				
	Башкаринское	2600				
Сибирь	Байкал	457				
Юг России	Каспийское море	-28				
Север России	Ладожское озеро	5				
	Онежское озеро	33				
	Водохранилище					
Россия	Белгородское	115				
	Белоярское	207				
	Братское	402				
	Воронежское	93				
	Горьковское	84				
	Клязминское	162				
	Костромское	85				
	Можайское	183				
	Цымлянское	35				
	Яузское (Смоленское)	214				

Города России, высота над уровнем моря, м. Таблица 1.					
Город	Высота, м				
Сочи	65				
Владивосток	8				
Севастополь	50				
Южно-Сахалинск	50				
Волгоград	-12				
Кызыл	630				
Орел	170				
Иркутск	440				
Петропавловск	100				
Калининград	5				
Омск	90				
Москва	255				
Новосибирск	150				
Н. Новгород	160				
Екатеринбург	270				
Братск	450				
Тюмень	102				
Ленинград	3				
Магадан	70				
Якутск	95				
Северодвинск	7				
Воркута	180				
Мурманск	50				
Сабетта	2				

Таблица 1.
высота над уровнем моря, м.
Высокогорные города России

Город	Высота, м
Тырныауз	1587
Теберда	1325
Кисловодск	949
Карачаевск	862
Владикавказ	703
Лермонтов	691
Усть-Джегута	679
Ессентуки	640
Железноводск	610
Алагир	579

Большой телескоп альт-азимутальный, установлен в Специальной астрономической обсерватории, расположен на высоте 2070 м, Карачаево-Черкесская республика. Самая глубокая шахта России - "Черемуховская-Глубокая", глубиной 1500 м, на Урале.

15. Список используемой литературы.

- 1. Пфлейдерер К. Лопаточные машины для жидкостей и газов. М. Машиностроение 1960.
- 2. Бак О. Проектирование и расчет вентиляторов . М. Госгортехиздат 1960.
- 3. Михайлов А.К. Лопастные насосы. М. Машиностроение 1977.
- 4. Соломахова Т.С., Чебышева К.В. Центробежные вентиляторы. Аэродинамические схемы и характристики. Справочник. М. Машиностроение 1980.
- 5. Ломакин А.А. Центробежные и осевые насосы. Л. Машиностроение 1965 г.
- 6. "Вентиляторы общего и специального назначения. Канальные вентиляторы" Каталог ОАО "МОВЕН" 2006.
- 7. Миняев В.В. Расчет параметров атмосферы с учетом влажности воздуха . Вестник МГТУ им. Н.Э. Баумана. Сер. Естесвенные науки. 2004. №2.
- 8. Богданов С.Н. Свойства веществ. Справочник. Санкт-Петербург 1999.
- 9. Каталог оборудования Systemair 2010.

Для посетителей форума ABOK: все мои работы находятся \to проектант.орг \to вентиляция \to алгоритмы расчетов.