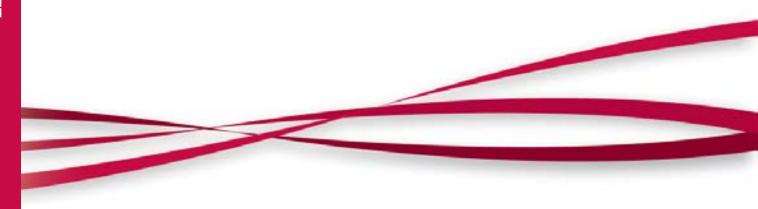


Каталог продукции 2010/2011

Providing indoor climate comfort

LENNOX)


Содержание

Воздушные системы	14
Крышные кондиционеры	40
Компрессорно-конденсаторные блоки и сухие градирни	60
Чиллеры и тепловые насосы	72
Фанкойлы и воздухообрабатывающие агрегаты	94
Прецизионные кондиционеры	126
Мониторинг и Диспетчеризация	136
Общая информация	140

7

8

Lennox International

Благодаря обширной сети своих филиалов компания Lennox International (LII) является ведущим мировым поставщиком решений по климат-контролю, предлагая на рынке решения и оборудование для обогрева, кондиционирования воздуха и холодоснабжения. Начиная с 1895 года, мы неуклонно следуем принципам целостности и новаторства.

16 тысяч сотрудников компании во всем мире последовательно обеспечивают наших потребителей передовой продукцией, непревзойденным качеством и гибким обслуживанием. Мы производим торговые марки, которым доверяют.

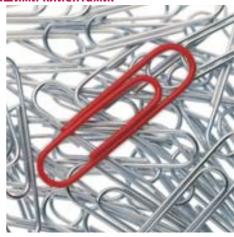
У нас общие цели

Мы стараемся довести свой бизнес до высочайших стандартов целостности в том, что мы говорим и что делаем, в продукции, которую мы изготавливаем, в услугах, которые предоставляем, и в подходе к работе. Все это имеет первостепенную важность для компании, которая вызывает в своих сотрудниках чувство гордости и преданности.

Наша концепция

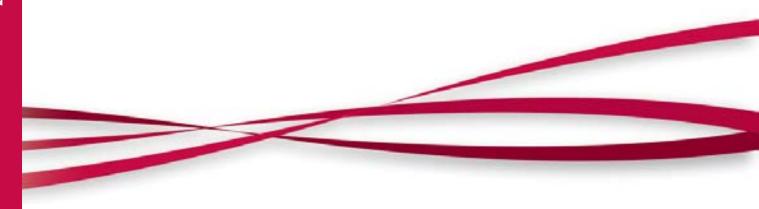
Стремясь стать ведущим европейским производителем промышленного оборудования для нагрева и охлаждения воздуха, мы:

- поставляем комплексную продукцию превосходного качества на **специализированные рынки** предоставляем нашим потребителям высококачественное **обслуживание** и рекомендации по применению продукции
- разрабатываем продукцию, основное назначение которой обслуживать постоянно меняющийся рынок


 новаторский подход на каждом этапе разработки

Лояльность основывается на подлинном партнерстве

Ваш надежный партнер


Сотрудничество с компанией Lennox дает крупнейшим участникам европейского рынка дополнительные преимущества. Большинство из них в течение 10 и более лет остаются нашими клиентами.

- Понять **клиентское восприятие**, выходящее далеко за рамки продукта или проекта
 - Организация работы с ключевыми клиентами
 - Специализированный отдел продаж
- Предоставлять клиенту время и профессиональные услуги
 - Квалифицированные специалисты по продажам
 - Представительства во многих странах Европы
- Удовлетворение потребностей клиентов основа работы всей структуры компании
 - Профессиональная служба по работе с клиентами
 - Структура основанная на качестве (ISO 9001, программа STEP+)
 - Долговременные взаимовыгодные отношения вместо «одноразовых» заказов
- Предоставлять решения, наиболее соответствующие потребностям клиентов
 - Учет мнений клиентов при разработке продукции
 - Признанное во всем мире лидерство компании Lennox в сферах исследования и разработки
- Быть ЕДИНОЙ организацией
 - Учет экологических требований (завод в Дижоне сертифицированный согласно стандарту ISO 14001)
- Компания Lennox International предоставляет своим сотрудникам равные возможности для роста

Наши клиенты видят разницу ...

Качество и Инновации

Компания Lennox направляет 3% **своего оборота** на исследования и разработки в странах Европы. А если учесть признанные возможности проектно-конструкторских подразделений компании в США, компания Lennox вполне обоснованно стремится занять ведущие позиции в сфере инноваций на рынке оборудования для отопления, вентиляции и кондиционирования воздуха.

Компания Lennox ежегодно подает заявки на получение ряда патентов. Крометого, мы тесно сотрудничаем с нашими партнерамипоставщиками в области общих исследований.

Сегодня большинство производимой нами продукции имеет сертификаты Eurovent. С этой программой мы остаемся решительными сторонниками укрепления целостности и прозрачности коммерческих взаимоотношений с нашими заказчиками.

Все европейские заводы компании Lennox имеют сертификаты ISO 9001. Завод в Лонгвике также получил сертификат ISO 14001 в марте 2007 года. Производимые агрегаты соответствуют директивам EEC, и каждый год уполномоченный орган производит специальную проверку на соответствие директивам по оборудованию высокого давления.

Все наши современные производственные центры оснащены превосходными лабораториями. Это позволяет компании Lennox выполнять тестирование своей продукции в самых разных условиях, обеспечивая наивысший уровень надежности.

Наши лаборатории используются при разработке новой продукции и в процессе исследований. В них мы непрерывно опробуем новые, передовые концепции.

- Лаборатория фабрики **ЛОНГВИК под Дижоном является уникальной для Европы**. Это единственная на континенте лаборатория, в которой можно выполнять тестирование крышных кондиционеров мощностью до 250 кВт. Две камеры для климатических испытаний общей площадью 250 м² оборудованы аэродинамической трубой АМСА с четырьмя приточно-вытяжными установками (108000 м³/ч) и пятью холодильными машинами (610 кВт).
 - •Основанная в 1998 году лаборатория фабрики в **БУРГОСЕ** позволяет выполнять высокоточное тестирование разрабатываемого оборудования для кондиционирования воздуха. Любой продукт, выпускаемый на рынок, обязательно проходит ряд жестких испытаний.

- Сначала 2007 года высокотехнологичный испытательный центр функционирует также на фабрике компании Lennox в МИОНСЕ под Лионом. Это передовое оборудование используется для тестирования и регулирования чиллеров мощностью до 500 кВт. Этот испытательный центр чрезвычайно важен для разработки современного холодильного оборудования, использующего новые компоненты и передовые технологии.
- Описанная европейская сеть компании лабораторий Lennox дополняется мощным лабораторным центром Lennox в США. Этот исследовательский центр является одним из наиболее передовых в своей сфере. Его площадь составляет 12000 M^2 , он включает в себя 8 камер климатических испытаний, лля лаборатории по исследованию коррозии и акустического воздействия, аэродинамическую испытательную систему, вибрационную платформу, а также знаменитую «камеру пыток», в которых продукция подвергается ускоренному испытанию долговечность.

Эти лаборатории доказывают, как важны для европейского подразделения компании Lennox инновации, надежность, усовершенствование, а также сертификация оборудования по стандарту Eurovent.

Новое оборудование...

Чиллеры и тепловые насосы

NEOSYSTM

200 → 1000 κBm

- Очень высокая эффективность благодаря хладагенту R410A
- Сверхнизкошумная работа
- Хладагент R410A, спиральные компрессоры
- Вентиляторы с инверторным управлением
- Расширенный микропроцессорный контроллер CLIMATIC™
- Агрегаты со встроенными насосами и теплоутилизацией (опция)
- 3 года гарантии*.

Крышные кондиционеры – Конденсатор водяного охлаждения

<u>Крышный кондиционер</u> водяной тепловой насос

47 → 196 κBm

- Одно из наиболее энергоэффективных решений
- Выгодное моноблочное решение для быстрого и простого монтажа
- Различные варианты дополнительного нагрева
- Управление подмешиванием свежего воздуха и естественное охлаждение
- Большой выбор сетевых интерфейсов

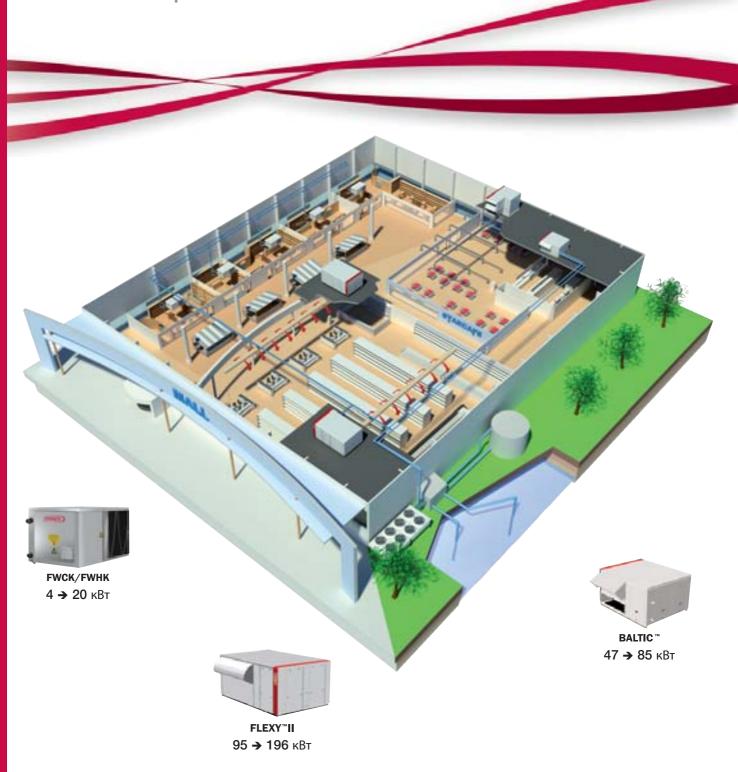
Вертикальные моноблочные кондиционеры

COMPACTAIR™

20 → 106 κBm

- R410A
- Естественное охлаждение
 - Очень компактный
- Динамическое оттаивание
- Контроллеры CLIMATIC™ 40 & CLIMATIC™ 50
- Низкошумное исполнение с инверторным управлением

Сплит-система - Конденсатор с центробежным вентилятором



INNOV@™ Energy Inverter

3 → 63 KBm

- Плавное регулирование холодопроизводительности (30 110 Гц)
 - Энергоэффективность • R410A
 - Точный контроль температуры

Ведущий поставщик решений для торговых комплексов

IKEA ПОРТУГАЛИЯ

Weldom ФРАНЦИЯ

Asda ВЕЛИКОБРИТАНИЯ

Géant Casino ФРАНЦИЯ

Компетентность в небольших коммерческих решениях

22 → 76 кВт

ECOLEAN™ 9 → 174 кВт

COMFAIR™1 → 51 кВт

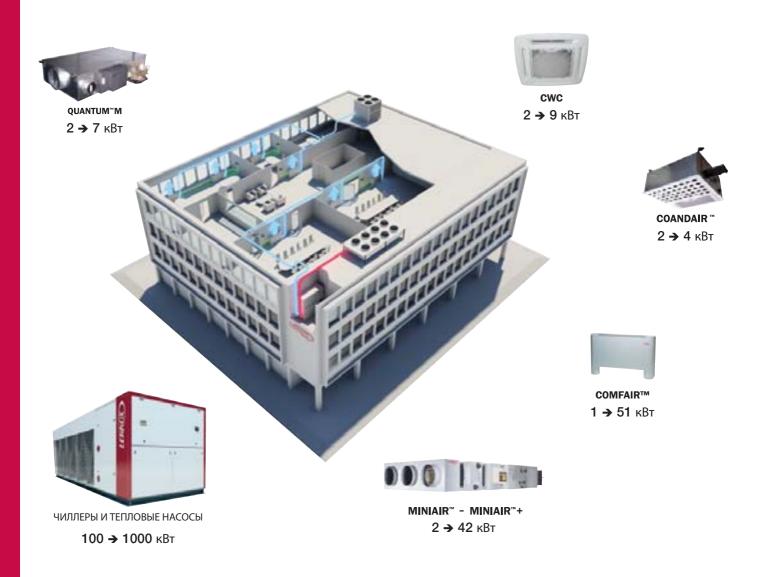
FLATAIR™ 10 → 28 кВт

COMPACTAIR ™ **20** → **100** кВт

AIRCOOLAIR™
19 → 134 кВт

Zara ИСПАНИЯ

Esso FEPMAHUR



Quick ФРАНЦИЯ

Maxi Dia ИСПАНИЯ

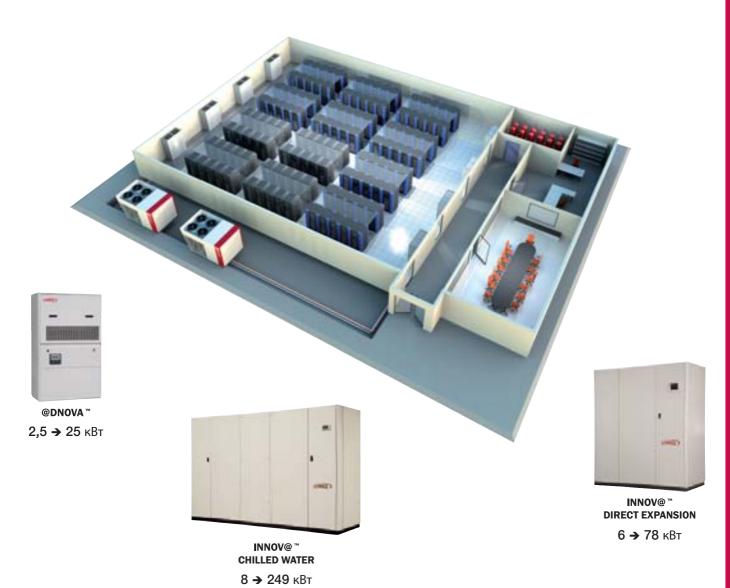
Инновации для прикладных решений

Torre Mutua ИСПАНИЯ

Holmes Place

Tour de Lille ФРАНЦИЯ

RBS ВЕЛИКОБРИТАНИЯ



Technopark POCCИЯ

Monsanto ПОРТУГАЛИЯ

Ноу-хау для теле/дата коммуникационных решений

Повысить знания и умения в области кондиционирования и холодоснабжения в условиях быстро развивающихся технологий и изменяющегося законодательства

Мы предлагаем

Для поддержания на высоком уровне и дальнейшего повышения вашей конкурентоспособности в условиях быстро развивающихся технологий и изменяющегося законодательства в области холодоснабжения и кондиционирования, компания LENNOX создала европейский учебный центр:

- улучшить практические знания
- оптимизировать профессиональную деятельность
- повысить конкурентность

Современный и инновационный, расположенный в одном из наших европейских производственных комплексов во Франции, учебный центр даст Вам опыт и знание технологий, которые вы ожидаете от международного производителя.

Курсы

Университет LENNOX адаптировался к Вашим требованиям и проводит обучение по оптимизации управления энергопотреблением наших систем кондиционирования и холодоснабжения для защиты окружающей среды:

- Автоматика и управление системами кондиционирования
- Запуск, обслуживание и ремонт оборудования
- Введение в технологию охлаждения и повышение квалификации
- Введение в кондиционирование воздуха и повышение квалификации
- Системы диспетчеризации
- Характеристики и особенности установок кондиционирования
- Обращение с хладагентами и их замена

Университет LENNOX предлагает практические занятия по полному спектру оборудования для кондиционирования, проводимые в специально выделенной зоне тестов.

Университет LENNOX также предлагает курсы согласно Ваших **особых запросов**;

мы найдем подходящее решение в соответствии с Вашими особыми требованиями: программа, дата и место проведения обучения.

Курсы совмещают теоретические и практические модули, по окончании выдается сертификат LENNOX - знак качества для Ваших заказчиков и подтверждение того, что Вы можете работать с нашим оборудованием наилучшим образом.

Оборудование

- 500 м² выделенных для обучения
- Аудиовизуальная комната для комфортного прохождения теоретических курсов
- Зона для практики тестирования крышных кондиционеров и холодильных машин
- Зона для практики тестирования различных систем кондиционирования (сплитсистемы, канальные кондиционеры и др.)
- Системные занятия по нескольким видам оборудования
- Тренажер программируемых контроллеров, используемых в нашем оборудовании
- Комната отдыха
- Комната отдыха и приема пищи

Инструкторы

- Опытные
- Постоянно в курсе реальных ситуаций на объектах

Электронное обучение

- Электронное обучение идеальное решение, если ваша занятость не позволяет посетить занятия в Университете Lennox.
- Наши гибкие электронные программы, ориентированные на обучающихся, представляют полноценную замену нашим традиционным курсам.

Компании-партнеры, которые прошли обучение:

- Alcatel
- Auchan
- Axima
- Carrefour
- Cegelec

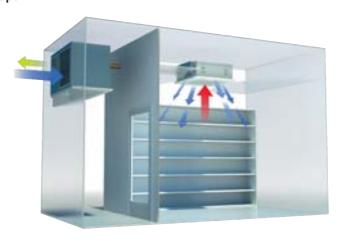
- City Facilities
- Cofacthec
- Dalkia
- Elyo Suez
- IKEA

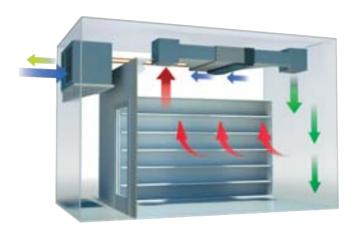
- Johnson Control
- Jtek
- Mc Donald's
- Veolia

Воздушные системы

Providing indoor climate comfort

• Сплит-системы с центробежным вентилятором конденсатора	
DUCTAIR™ + & COMFORT™ +	
5 - 18 kW	16
	·····
• Сплит-системы для скрытого монтажа	
DUCTAIR™ II	
5 - 17 kW	20
Горизонтальные моноблочные кондиционеры с конденсатором водяного	
охлаждения FWCK/FWHK	
4 - 20 kW	22
4 - 20 KW	22
• Горизонтальные моноблочные кондиционеры	
FLATAIR™	
10 - 28 kW	24
Pantura il una valla ficultura valli valla v	
• Вертикальные моноблочные кондиционеры	
COMPACTAIR™	
20 - 99 kW	28
• Большие канальные кондиционеры	
AIRCOOLAIR™	
	0.4
19 - 134 kW	34


Comfort™ + & Ductair™ + · 5 → 18 kW


Сплит-системы с центробежным вентилятором конденсатора

Основные применения

- Маленькие магазины с небольшой тепловой нагрузкой
- Применения с низкими требованиями к системам кондиционирования
- Помещения в центральных частях города
- Помещения с подвесными потолками

Преимущества оборудования

- Небольшие инвестиции
- Многоскоростная вентиляция
- Долгий срок службы

Общая информация

Кондиционеры COMFORT™ + и **DUCTAIR™** + – сплит-системы с центробежным вентилятором конденсатора **для сохранения архитектурного облика.**

Один кондиционер **COMFORT™ +** или **DUCTAIR™ +** состоит из:

- 1 кассетный или канальный внутренний блок
- 1 конденсаторный блок с центробежным вентилятором
- Модели с тепловым насосом **COMFORT™** +

Основные компоненты

Ductair™

- Проводной пульт управления
- Воздушный фильтр
- Горизонтальная подача воздуха
- Горизонтальная или вертикальная рециркуляция воздуха
- Высокое статическое давление
- 2-х или 3-скоростной вентилятор
- Малая высота: 235, 287, 315 и 415 мм

• Приспособления для крепежа к потолку

Comfort™

- Проводной пульт управления
- Внутренний блок
- Пластиковый диффузор
- Воздушный фильтр

Модели

ТИПОРАЗМЕР		18	24	30	36	48	60	70	80
DUCTAIR™ +	NCCK/NCHK								
COMFORT™ +	CXHK								

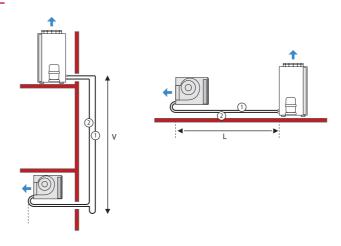
Технические характеристики – Внутренние блоки

DUCTAIR™ +		NCCK/HK	18	24	30	36	36	48	60	70	80
Режим охлаждения											
Холодопроизводительность (1)		кВт	5,10	6,6	7,7	9)	11	13,5	16,1	18,3
Коэффициент энергоэффективности EER			2,52	2,54	2,33	2,3	33	2,34	2,33	2,40	2,33
Режим нагрева											
Теплопроизводительность ⁽⁵⁾		кВт	5,4	6,85	8,4	9,2		11,4	14,4	16,5	19
Коэффициент энергоэффективности СОР			2,62	2,70	2,60	2,63		2,71	2,55	2,74	2,60
ВНУТРЕННИЙ БЛОК		LNXO	18	24	30	36	36	48	60	70	80
De que a pecanica	Макс.	м3/ч	915	1200	1350	17:	25	2150	2450	3400	4450
Расход воздуха	Мин.	м3/ч	600	740	920	10	00	1630	2060	2250	3050
Располагаемое статическое давление		Па	60	60	100	12	20	1(00	140	160
Электропитание В/фаз/Гц			230/1/50								
Акустические характеристики											
Уровень звукового давления (Lw) ⁽¹⁾		dB(A)	64	6	6	68 66		66	72	74	77

COMFORT™ +		СХНК	018	024	036	036	048			
Режим охлаждения										
Холодопроизводительность		кВт	5,50	6,50	9,6	6O	11,30			
Коэффициент энергоэффективности ЕЕ	7	кВт	2,75	2,6	2,5	53	2,57			
Предельные наружные эксплуатационные	характеристики	°C	°C +19 (0 (1), -10 (2) / +45							
Режим нагрева										
Теплопроизводительность	кВт	5,30	6,80	9,00		11,10				
Коэффициент энергоэффективности СС	ээффициент энергоэффективности СОР			2,66	2,8	2,84				
Предельные наружные эксплуатационные	характеристики			-10 / +18						
ВНУТРЕННИЙ БЛОК		LCXO	0:	24	048					
Pacyon poanya	Макс.	м3/ч	92	20		1650				
Расход воздуха	Мин.	м3/ч	6	50		1200				
Электропитание	·	В/фаз/Гц		230/1/50						
Диаметр сливного патрубка		MM	MM 16 16							
Акустические характеристики										
Уровень звукового давления [®]		dB(A)	5	51		64				

Предельные эксплуатационные характеристики

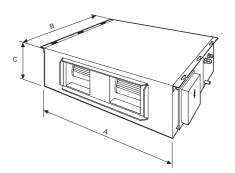
Power overweets		
Режим охлаждения	°C	°C
Максимальная	45	32
Минимальная	19	21
Минимальная с СРС (двухпозиционное регулирование) ⁽¹⁾	0	-
Минимальная с СРС (пропорциональное регулирование) (1)	-10	-


Power upropa		Температура воздуха в помещении
Режим нагрева	°C	°C
Максимальная	18	27
Минимальная	-10	15

⁽¹⁾ СРС: Комплект для работы при низких температурах (двухпозиционное или пропорциональное регулирование)

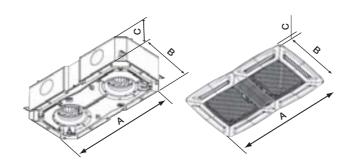
Технические характеристики – Конденсаторные блоки

КОНДЕНСАТОРНЫЙ БЛОК		KCCK/HK	18	24	30	36	36	48	60	70	80	
Расхол возлуха	Макс.	м3/ч	2 600	2 500	3 150	3 1	00	3 400	4 950		5 900	
	Мин.	м3/ч	1 800	1 750	2 000 2 4		2 400	3 750		4 350		
Располагаемое статическое давление		Па	70	90		100	100 90 120		20	150		
Электропитание		В/фаз/Гц		230/1/50 4					400/3/50)		
Компрессор		Тип		Спиральный								
Соединение		Тип		Развальцовка						Пайка		
Акустические характеристики												
Уровень звукового давления (Lw) ⁽¹⁾		dB(A)	6	8	69			73		80		

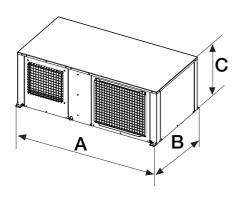

Параметры фреоновых трубопроводов

КОНДЕНСАТОРНЫЙ БЛОК		ксск/нк	18	24	30	36	36	48	60	70	80
Соединение		Тип		Развальцовка						Пайка	
Жидкостная лині		ИЯ	1/	1/4" 3/8"					1/2"		
Диаметр запорного вентиля	Газовая линия		1/2"	5/	8" 3/4"			7/8"			
Масса хладагента		КГ	1,37	2	2,64	2,9	95	3,72	4	5,6	5,6
Плина фрасцарых линий	Макс. перепад	М	15								
Длина фреоновых линий Общая		М	25								

Габаритные размеры и масса


Внутренний блок DUCTAIR™

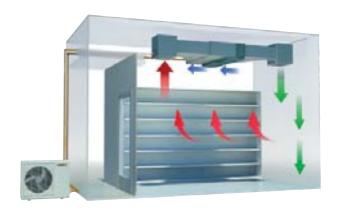
DUCTAIR™	LNXO	018	024	030	036	048	060	070	080
А	MM		10	000		11	95	13	00
В	MM	50	35	70	700 750		850		
С	MM	235	235	28	37	3-	15	415	
Macca	КГ	3	5	43	44	57	58	85	86


Габаритные размеры и масса

Внутренний блок COMFORT™

COMFORT™ +	СХНК	018	024	036	036	048								
ВНУТРЕННИЙ БЛОК	LCXO	02	4											
A	MM	57	5		1175									
В	MM	57	5		575									
C	MM	29	8	298				298		298				
Macca	КГ	2	4	45										
ВОЗДУХОРАСПРЕДЕЛИТЕЛЬНАЯ РЕШЕТКА	LCXO	02	4		048									
A	MM	72	720		1320									
В	MM	720		720		720		720		720		720		
С	MM	4	3	48										
Macca	КГ	3		5										

Конденсаторный блок


НАРУЖНЫЙ БЛОК	КСНК	018	024	036	048	060	070	080
A	MM	9.	75	1050	1250	83	900	
В	MM	6	25	750	820	13	1450	
С	MM	48	485		495	595		595
Macca	KГ	78	81	92	140	185	190	200

DUCTAIR™ II · 5 → 17 kW

Сплит-система для скрытого монтажа

Основные применения

- Маленькие магазины с небольшой тепловой нагрузкой
- Применения с низкими требованиями к системам кондиционирования
- Помещения в центральных частях города
- Помещения с подвесными потолками

Преимущества оборудования

- Малые инвестиции
- Поставка в течение 24-48 часов
- Охлаждение в зимний период

Общая информация

Кондиционер DUCTAIR™ II – канальная сплит-система с осевым вентилятором конденсатора.

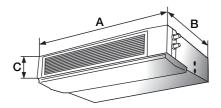
- Один кондиционер **DUCTAIR™ II** состоит из:
- 1 конденсаторный блок с осевым вентилятором
- Модель с тепловым насосом

• 1 канальный внутренний блок

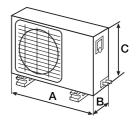
Основные компоненты

- Инфракрасный пульт управления
- Проводной пульт управления
- Воздушный фильтр
- Горизонтальная подача воздуха
- Комплект для эксплуатации при низкой температуре наружного воздуха до -7°C
- 3-скоростной вентилятор
- Малая высота: 210, 298 и 320 мм

• Приспособления для крепежа к потолку


Технические характеристики

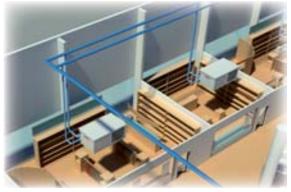
DUCTAIR™ II		NHM	012	018	024	030	036	048	060
Режим охлаждения	1								
Холодопроизводите.	ЛЬНОСТЬ	кВт	3,5	5,4	7,1	9,2	10,5	14	17
Коэффициент энерго	эффективности EER		3	2,84	2,83	2,83	2,84	2,98	2,83
Режим нагрева									
Теплопроизводитель	ьность	кВт	3,8	6	8	9,5	11,4	15,2	20
Коэффициент энерго	ээффективности СОР		3,17	3,16	3,2	2,92	3,4	3,10	3,33
Характеристики - В	нутренний блок								
Расход воздуха		м3/ч	м3/ч 580 1160 1460		2070	2070	2400	2800	
Располагаемое стати	ческое давление	Па	Па 40 40 40		70	70	70	96	
Электропитание		В/фаз/Гц		220/1/50			/1/50 /3/50	380/	/3/50
Характеристики - Н	Т аружный блок								
Макс. расход воздуха	a	м3/ч	2100	2400	3000	5000	5000	6000	6000
Электропитание		В/фаз/Гц		220/1/50			/1/50 /3/50	380/	/3/50
	Жидкостная линия		1/4"	1/4"	3/8"	1/2"	1/2"	1/2"	1/2"
Диаметр патрубка	Газовая линия		1/2"	1/2"	5/8"	3/4"	3/4"	3/4"	3/4"
Масса хладагента		КГ	1,12	2,05	2,6	3,10	3,10	40	42
Длина фреоновых	Макс. длина линий	MM	25	25	30	30	30	50	50
линий	Макс. перепад	MM	15	15	20	15	20	30	30
Акустические хара	ктеристики								
Уровень звукового д	авления наружного блока ⁽¹⁾	dB(A)	43	48	55	57	57	58	58
Уровень звукового д	авления внутреннего блока ⁽¹⁾	dB(A)	41	45	49	49	49	51	52


⁽¹⁾ Уровень звукового давления измерен на расстоянии 1 м – воздуховоды подключены

Габаритные размеры и масса

Внутренний блок

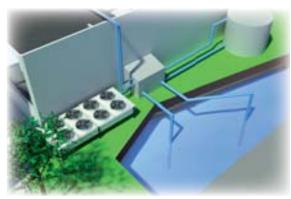
Наружный блок



DUCTAIR™ II	NHM	012	018	024	030	036	048	060
Внутренний блок								
A	MM	955	1000	1000	1350	1350	1350	1350
В	MM	385	800	800	800	800	800	800
С	MM	210	298	298	298	298	298	320
Масса нетто	КГ	15	36	38	48	48	50	70
Наружный блок								
A	MM	760	845	895	990	990	940	940
В	MM	285	335	330	360	360	340	340
С	MM	590	695	860	960	960	1245	1245
Масса нетто	КГ	44	57	68	90	90	112	112

FWCK/FWHK · 4 → 20 kW

Горизонтальные моноблочные кондиционеры с конденсатором водяного охлаждения



Основные применения

- Магазины в торговом центре
- Небольшие офисы в зданиях с водяным контуром
- Средние и большие помещения с необходимостью зонального регулирования

Преимущества оборудования

- Отдельный учет ресурсов и обслуживание в одном здании
- Оптимизация использования площади: Подпотолочная установка
- Высокоэффективное решение
- Многоскоростная вентиляция

Общая информация

Кондиционеры FWCK – моноблочные агрегаты, предназначенные для создания комфортных условий (охлаждение и нагрев) в **малых помещениях в составе большого здания.**

Они подключены к водяному контуру, который охлаждается при помощи градирни или сухой градирни, или является частью геотермальной установки.

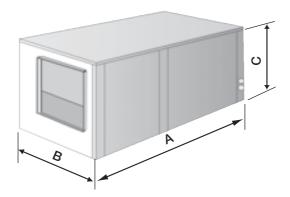
Поставляются системы следующих исполнений:

- Горизонтальная модель
- Только охлаждение
- Тепловой насос

Основные компоненты

- Центробежный вентилятор для подачи воздуха по воздуховодам
- Высококачественный паяный пластинчатый теплообменник из нержавеющей стали
- Дистанционный пульт управления с датчиком температуры
- Программирование недельного режима работы
- Корпус из оцинкованной листовой стали, неокрашенный
- Приспособления для крепежа к потолку
- Возможность изменения подачи воздуха на месте монтажа: боковая или фронтальная

Дополнительные принадлежности и функции


- Дополнительный нагрев
- Электрический нагреватель
- Водяной калорифер
- Гидравлические опции
- Реле протока
- Водяной фильтр
- Регулирующий водяной вентиль
- Дополнительный комфорт
- Звукоизолирующий кожух компрессора
- Монтаж, обслуживание и безопасность
- Главный выключатель (до типоразмера 08)

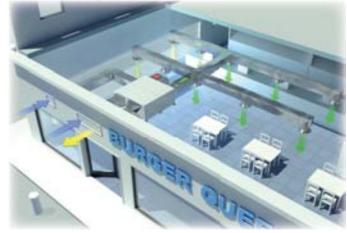
Технические характеристики

FWCK/FWHK		4	6	7	8	10	10	12	16	22
Режим охлаждения										
Холодопроизводительность ⁽¹⁾	кВт	4	5,7	7,3	8,4	10),2	13	14,9	20,1
Коэффициент энергоэффективности EER		3,54	3,77	3,76	3,51	3,	72	3,74	3,48	3,4
Режим нагрева										
Теплопроизводительность ⁽²⁾	кВт	5,7	7	8,6	10,4	12	2,3	15	18,5	24,5
Коэффициент энергоэффективности СОР		4,01 4,04 3,86 3,78			3,	,9	3,83	3,83	3,68	
Электрические характеристики										
Электропитание	В/фаз/Гц			230/1/50)			400/	3/50	
Макс. мощность	кВт	1,59	2,63	3,23	3,86	4,	51	5,53	6,61	8,7
Характеристики холодильного контура	l			'	•			•		
Компрессоры	Тип	Ротационный Спиральный								
Количество компрессоров	ШТ.					1				
Характеристики конденсатора с водяным охлаж	дением									
Номинальный расход воды	л/ч	713	1019	1307	1505	18	29	2340	2664	3618
Гидравлическое сопротивление - Охлаждение	кПа	16	35	61	83	4	5	75	35	72
Гидравлическое сопротивление - Нагрев	кПа	17	35	64,5	87,6	47	,5	78,8	38,1	75,9
Центробежный вентилятор			•		•	•				
Минимальный расход воздуха	m³/h	450	600	800	1000	12	00	1500	1800	2250
Максимальный расход воздуха	m³/h	1050	1550	1400	2350	22	50	3100	3100	4500
Максимальное располагаемое статическое давление ⁽³⁾	Па	80	30 140 100 120 100 120 21						210	
Акустические характеристики										
Уровень звукового давления - охлаждение (высокая/низкая скорость) ⁽⁴⁾	дБА	44/47	42/49	44/45	51/52	49/	/50	47/50	46/49	-/56,5
Уровень звукового давления - нагрев (высокая/ низкая скорость) ⁽⁴⁾	дБА	44/47	47/49	44/45	51/52	50/	/50	47/50	46/49	-/56,5

- (1) Температура воздуха в помещении: 27 °C по сухому термометру, 19 °C по влажному термометру Температура воды на входе: 30°C при номинальном расходе воды.
- (2) Температура воздуха в помещении: 20 °C по сухому термометру Температура воды на входе: 20 °C при номинальном расходе воды.
- (3) При минимальном расходе воздуха
- (4) Измерено на расстоянии 2 м от агрегата

Габаритные размеры и масса

FWCK/FWHK		4	6	7	8	10	12	16	22
A	MM	792	792	792	1083	1083	1503	1503	1503
В	MM	492	492	492	623	623	703	703	703
С	MM	440	440	440	465	465	505	505	505
Macca	КГ	56	77	80	103	106	150	158	171


Flatair[™] · 10 → 28 kW

Горизонтальные моноблочные кондиционеры

Основные применения

- Магазины в городской черте
- Небольшие офисы
- Банки
- Рестораны и бары

Преимущества оборудования

- Сохранение архитектурного облика: агрегат полностью внутренней установки
- Компактный и моноблочный агрегат: все компоненты собраны в одном корпусе
- Естественное охлаждение в переходный период
- Подмешивание наружного воздуха

Общая информация

Кондиционеры FLATAIR™ – моноблочные агрегаты для охлаждения, нагрева и вентиляции малых и средних помещений. Агрегат разработан для полностью внутренней установки и особенно **подходит для установки в центральной части города, где существуют жесткие архитектурные ограничения.** Кроме того, кондиционер не занимает места, поскольку подвешивается к потолку.

Поставляются системы следующих исполнений:

- Только охлаждение
- Тепловой насос
- Моноблочный агрегат

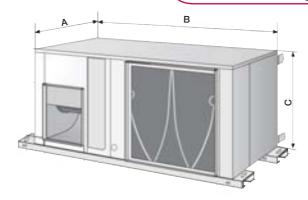
Основные компоненты

- Воздухообрабатывающая и конденсаторная секции подключаются к воздуховодам
- Центробежные вентиляторы конденсатора, напор до 160 Па
- Центробежный приточный вентилятор
- Спиральный компрессор
- Дистанционный термостат с датчиком температуры
- Корпус из оцинкованного стального листа
- Защитная решетка в компрессорной секции

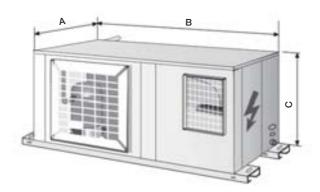
FLATAIR	FLCK / FLHK	10 10	12	16	22	24	28	30	
Режим охлаждения									
Холодопроизводительность брутто ⁽¹⁾	кВт	10,2	12,2	16,2	20,8	23,4	27,4	29,5	
Холодильный коэффициент EER брутто	'	2,77	2,67	2,53	2,57	2,59	2,63	2,41	
Потребляемая мощность	кВт	3,68	4,57	6,4	8,1	9,0	10,4	12,2	
Режим нагрева			'	•	'	'	'		
Теплопроизводительность нетто ⁽²⁾	кВт	10	12	15,6	20	22,8	27	29,8	
Холодильный коэффициент СОР нетто		3,16	2,92	3,16	3,03	2,92	3,20	3,16	
Потребляемая мощность	кВт	3,16	4,11	5,6	6,7	8,6	9,2	10,3	
Электрические характеристики		-, -	,		/	-,-			
Электропитание	В/фаз/Гц	230/1/50			400/3/50)			
Характеристики холодильного контура	5, 403, 14				.00,0,0				
Количество контуров	шт.				1				
Количество компрессоров	шт.			<u>. </u>					
Масса хладагента									
Только охлаждение - Моноблок	КГ	2,24	2,56	3,55	5	6,7		7	
Масса хладагента Тепловой насос - Моноблок	КГ	2,62	2,92	4	5,5	7,5	8	8,2	
	LFXO / LFCK /	10 10	10	10			20	00	
ВОЗДУХООБРАБАТЫВАЮЩАЯ СЕКЦИЯ	LFHK	10 10	12	16	22	24	28	30	
Мощность									
Потребляемая мощность	кВт	0,38		0,9	1,3		1,35		
Электрические характеристики									
Электропитание	В/фаз/Гц	230/1/50	0			400/3/50)		
Вентиляция									
Минимальный расход воздуха	м3/ч	1500	1650	2400	3200	4000	4250	4500	
Максимальный расход воздуха	м3/ч	2350	2300	3700	5350	6300	6000	6000	
Макс. располагаемое статическое давление	Па	120	110	160	180	240	200	180	
Акустические характеристики									
Общий уровень звуковой мощности ⁽³⁾	дБА	65		69 80 8			84	81	
КОНДЕНСАТОРНЫЙ БЛОК	KFCK / KFHK	10 10	12	16	22	24	28	30	
Потребляемая мощность									
Потребляемая мощность - охлаждение ⁽¹⁾	кВт	3,30	4,19	5,50	6,79	7,67	9,05	10,9	
Потребляемая мощность - нагрев ⁽¹⁾	кВт	2,78	3,73	4,7	5,44	7,25	7,85	8,97	
Электрические характеристики									
Электропитание	В/фаз/Гц	230/1/50			400/3/50)			
Вентиляция									
Минимальный расход воздуха	м3/ч	2350	2400	3750	4350	4500	5000	5250	
Максимальный расход воздуха	м3/ч	3500	3400	4950	5900	6600	64	-00	
Располагаемое статическое давление	Па	100	90	120	150	160	120	100	
Акустические характеристики				-					
Общий уровень звуковой мощности ⁽³⁾	дБА	БА 69 73 80 81 83						80	
Предельные эксплуатационные характеристик		ние / тепловой	і насос)	1					
Макс. температура воздуха в помещении	°C			32	/ 23				
Мин. температура воздуха в помещении	°C				/ 15				
Макс. температура наружного воздуха		°C 45 / 24							
Мин. температура наружного воздуха ⁽⁴⁾	°C				0/-8				
тература парулитого воздула		13	, 0		9				

⁽¹⁾ Температура воздуха в помещении: 27° С по сухому термометру, 19° С по влажному термометру - Температура наружного воздуха: 35° С по сухому термометру, 24° С по влажному термометру

Кондиционеры FLATAIR™ участвуют в программе AC1/AC2 сертификации Eurovent (www.eurovent-certification.com)

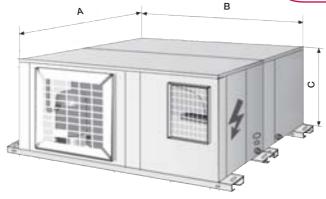

⁽²⁾ Температура воздуха в помещении: 20 °C по сухому термометру, 12 °C по влажному термометру - Температура наружного воздуха: 7°C по сухому термометру, 6°C по влажному термометру

⁽³⁾ При условиях Eurovent


⁽⁴⁾ Для типоразмеров 10, 12 и 16, температура 0°С при наличии комплекта для круглогодичной эксплуатации с двухпозиционным регулированием

Габаритные размеры и масса

Воздухообрабатывающая секция


ВОЗДУХООБРАБАТЫВАЮЩАЯ СЕКЦИЯ	LFXO / LFCK / LFHK	10	12	16	22	24	28	30
A	MM	430	430	500	620	775	775	775
В	MM	1250	1250	1300	1450	1500	1500	1500
С	MM	495	495	595	595	645	645	645
Масса	KГ	70	70	100	130	140	150	150

Конденсаторный блок

КОНДЕНСАТОРНЫЙ БЛОК	KFCK / KFHK	10	12	16	22	24	28	30
A	MM	820	820	830	900	1025	1025	1025
В	MM	1250	1250	1300	1450	1500	1500	1500
С	MM	495	495	595	595	645	645	645
Масса	KГ	130	135	180	195	265	275	285

Моноблочный агрегат

МОНОБЛОЧНЫЙ АГРЕГАТ	FLCK/FLHK	10	12	16	22	24	28	30
А	MM	1250	1250	1330	1520	1800	1800	1800
В	MM	1250	1250	1300	1450	1500	1500	1500
С	MM	495	495	595	595	645	645	645
Масса	кг	200	205	280	325	405	425	430

Дополнительные принадлежности и функции

Дополнительный нагрев

- Электрический воздухонагреватель (1 ступень мощности): дополнительный нагреватель для агрегатов только охлаждение и тепловой насос. 2 варианта мощности для каждой модели.
- Водяной воздухонагреватель: дополнительный нагреватель для агрегатов только охлаждение и тепловой насос. 2-х рядный калорифер для всех моделей.

Встраивание в архитектурные конструкции

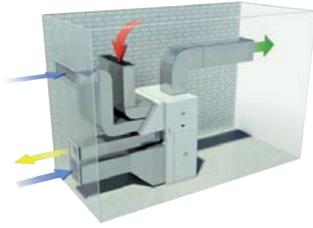
- Наружный воздушный фильтр: Воздушный фильтр для конденсаторной секции. Предотвращает загрязнение теплообменника конденсатора, особенно если агрегат установлен в пыльной или загрязненной среде, например, центр города или промышленный район.
- Комплект для наружного монтажа: Данная опция включает дополнительные приспособления, козырьки и воздушные фильтры для защиты агрегата Flatair™ от дождя и грязи при наружной установке.
- Шумоглушитель: Данная опция устанавливается на вытяжном воздуховоде и позволяет уменьшить уровень шума от конденсаторной секции. Установка шумоглушителей рекомендуется при непосредственном выбросе воздуха от конденсаторной секции.

Высокое качество воздуха в помещении

• Комплект для естественного охлаждения: Энергосберегающее решение, которое использует холодный наружный воздух, для охлаждения воздуха в помещении. Комплект для естественного охлаждения также позволяет вручную задать количество наружного воздуха.

Безопасность и долгий срок эксплуатации

- Реле контроля фаз: Защита электрического контура, которая позволяет избежать неправильного подключения 3-фазного напряжения. Защищает компрессор при первом пуске.
- Подогреватель картера компрессора (агрегаты только охлаждение) Подогреватель картера поддерживает температуру масла в компрессоре при низких температурах наружного воздуха и неработающем агрегате. Это обеспечивает смазку компрессора при запуске.
- Главный выключатель: Обеспечивает безопасность сервисного обслуживания кондиционеров Flatair™, предотвращая проведение работ при включенном агрегате.


Дополнительный комфорт и энергоэффективность

- Выносной датчик температуры в помещении / Выносной канальный датчик температуры: Данная опция выбирается, если пульт управления устанавливается в помещении, которое не будет кондиционироваться.
- Комплект для эксплуатации при низкой температуре наружного воздуха до 0°С: Данная опция обеспечивает работу кондиционера в режиме охлаждения при температуре наружного воздуха до 0°С.
- Вентиль байпаса горячего газа: Кондиционер Flatair может работать в режиме охлаждения при наружной температуре до -10°C.
- Программируемый термостат: Недельный таймер для наилучшего комфорта. Можно задать 4 различные уставки для каждого из 6 временных периодов на каждый день.
- Дистанционное включение/отключение: Дистанционный переключатель для ручного включения и отключения агрегата.

Compactair™ · 20 → 100 kW

Вертикальные моноблочные кондиционеры

Основные применения

- Розничные магазины в городской черте
- Торговые центры
- Промышленные предприятия

Преимущества оборудования

- Сохранение архитектурного облика: агрегат полностью внутренней установки
- Очень компактный агрегат
- Естественное охлаждение и подмешивание наружного воздуха
- Низкий уровень шума
- Гибкость применений

Общая информация

Кондиционеры COMPACTAIR™ используются для охлаждения и нагрева **средних и больших коммерческих помещений в городских зданиях,** где действуют строгие архитектурные ограничения и затруднен доступ к крыше. Агрегат разработан для внутренней установки.

Поставляются системы следующих исполнений:

- Моноблочный агрегат
- Сплит система
- Двойная сплит-система с независимыми воздухообрабатывающими блоками для зонального

Основные компоненты

- Вертикальная конструкция для малой площади основания
- Центробежные вентиляторы с располагаемым статическим давлением до 400 Па в воздухообрабатывающей секции
- Центробежные вентиляторы в конденсаторной секции
- Спиральные компрессоры
- Корпус из оцинкованного стального листа
- Воздушные фильтры G4 и G4/F7
- Электропитание 400 B / 3 ф + N / 50 Гц
- Цвет покраски RAL 9002

Система управления

Все агрегаты оснащены:

- Динамическое оттаивание
- Динамическая уставка
- Работа по расписанию

2 типа систем управления с эксклюзивной программой от компании Lennox используются агрегатами данной серии:

- **Контроллер CLIMATIC™ 40:** встроенный сервисный пульт управления и выносной пульт управления для пользователя
- **Контроллер CLIMATIC™ 50** для дополнительного комфорта и сетевых подключений: Система Ведущий-Ведомый, сетевой пульт управления, подключение к системам управления инженерным оборудованием здания (BMS) или системе мониторинга компании Lennox
 - ADALINK™

Технические характеристики

COMPACTAIR™	20\$	25S	30S	35S 4	10S 45	5D 5	5D 70	D 85D	100D
Моноблочный агрегат	CMC / CMH							332	
Сплит система	CSC/CSH - CIC/CIH								
Двойная сплит-система						0.4	200 040	35S 2x40	
	CDC / CDH - 2x CIC/CIH					_			
COMPACTAIR™			20S	25S	30S	35S	40\$	45D	55 D
Только охлаждение СМС/ С									
Холодопроизводительность б		кВт	19,6	25	28	36	42	48	58
Холодильный коэффициент ЕЕ	ЕК брутто		2,7	2,7	2,5	2,6	2,6	2,6	2,7
Потребляемая мощность		кВт	7,3	9,2	11,0	13,7	15,9	18,8	21,5
Тепловой насос CMH / CSH +	·CIH								
Теплопроизводительность нет	гто	кВт	19,5	25	29,5	36	42	49,5	59
Холодильный коэффициент СС	ОР нетто		2,9	2,9	2,75	2,9	3	2,85	2,9
Потребляемая мощность		кВт	6,72	8,62	10,7	12,4	14	17,4	20,3
Мощность электрического на	гревателя - Стандартный ⁽¹⁾	кВт	10	10	10	15	15	15	20
Мощность электрического на		кВт	15	15	15	20	20	20	30
Мощность электрического на		кВт	20	20	20	30	30	30	40
Мощность водяного воздухон		кВт	31	38	40	56	61	66	91
Холодильный контур	агревители	IND1	01	00	40	- 50	01	00	01
Кол-во компрессоров – Кол-во	2 KOHTVIDOR		1/1	1/1	1/1	1/1	1/1	2/2	2/2
	* '	1/5							7,14 + 7,14
Масса хладагента в контуре (п	1	КГ	5,8	6,12	6,89	8,93	9,20	10,76 + 5,76	1,14 + 1,14
Воздухообрабатывающая с			0150	4050	4050	0000	0050	7050	0050
Минимальный расход воздуха		м3/ч	3150	4250	4650	6200	6950		9950
Максимальный расход воздух		м3/ч	4100	5500	6000	8050	9050		12850
Макс. располагаемое статичес	ское давление	Па	322	320	326	327	327	210	386
Конденсаторная секция		T	T T		· · · · · · · · · · · · · · · · · · ·				T
Номинальный расход воздуха		м3/ч	7600	8500	10000	12000	11700	14000	10000
Макс. располагаемое статичес	ское давление	Па	170	209	256	195	192	218	265
Акустические характеристи	КИ								
Уровень звуковой мощности вентилятора	конденсатора (приток) – стандартный агрегат (Lw)	дБА	80	83	86	84	84	88	87
Уровень звуковой мощности вентилятора	конденсатора (приток) – низкошумный агрегат (Lw)	дБА	73	74	77	75	75	78	78
Излучаемый уровень звуковой мощности	в помещении – стандартный моноблочный агрегат(Lw)	дБА	75	76	79	77	78	78	82
Излучаемый уровень звуковой мощн	ности в помещении – низкошумный arperat(Lw)	дБА	71	72	75	73	73	74	76
Уровень звуковой мощности г	приточного вентилятора (Lw)	дБА	73	78	80	80	83	86	80
			===	0.55	1005				
COMPACTAIR™			70D	85D	1000)	55D	70D	85D
Охлаждение				C/ CSC				C + 2 x C	
Холодопроизводительность б		кВт	72	87	105		58	72	87
Холодильный коэффициент ЕЕ	R брутто	T	2,6	2,7	2,6		2,7	2,6	2,7
Потребляемая мощность		кВт	27,8	32,5	40,4	-	21,5	27,8	32,5
Нагрев			CM	H/ CSH	+ CIH		CD	H + 2 x C	H
Теплопроизводительность нет	ITO	кВт	69,5	81	101		59	69,5	81
Холодильный коэффициент СС	ОР нетто		2,8	2,85	2,85	5	2,9	2,8	2,85
Потребляемая мощность		кВт	24,8	28,4	35,4	-	20,3	24,8	28,4
Мощность электрического на	гревателя - Стандартный ⁽¹⁾	кВт	20	20	30		20	20	20
Мощность электрического на	гревателя - Средний ⁽²⁾	кВт	30	30	40		30	30	30
Мощность электрического на	гревателя - Высокий ⁽³⁾	кВт	40	40	50		40	40	40
Мощность водяного воздухон		кВт	105	113	171		40	56	61
Холодильный контур				1					
Кол-во компрессоров – Кол-во	O KOHTVIDOR		2/2	2/2	3/2	,	2/2	2/2	2/2
Масса хладагента в контуре (п		КГ			33 15,2 + 10		14 + 7,14		10,33 + 10,33
Воздухообрабатывающая с		I N	U,00 + 0,00	10,00 + 10,	10,2 + 10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	17 11,14	0,00 T 0,00	. 5,00 + 10,00
		M2/11	10450	14000	1705	0 0	× 4650	2 x 6200	2 v 6050
Минимальный расход воздуха		M3/4	12450	14000				2 x 6200	
Максимальный расход воздух		м3/ч	15090	16725	_			2 x 8050	
Макс. располагаемое статичес	кое давление	Па	354	346	358	2	2 x 326	2 x 327	2 x 327
Конденсаторная секция							1055		
Номинальный расход воздуха		м3/ч	10500	11000			10000	10500	11000
Макс. располагаемое статичес	кое давление	Па	255	333	301+1	94	265	255	333
Акустические характеристи	ки	1							
Уровень звуковой мощности вентилятора	конденсатора (приток) – стандартный агрегат (Lw)	дБА	88	89	92		87	88	89
Уровень звуковой мощности вентилятора	конденсатора (приток) – низкошумный агрегат (Lw)	дБА	79	80	83		78	79	80
Markulackuliğ vecelelil. askurasağ vecili ask		пΕΛ	00	0.1	00				

дБА

дБА

дБА

80

77

85

81

78

87

2 x 80

2 x 80

2 x 83

Уровень звуковой мощности приточного вентилятора (Lw)

Излучаемый уровень звуковой мощности в помещении – стандартный моноблочный агрегат (Lw)

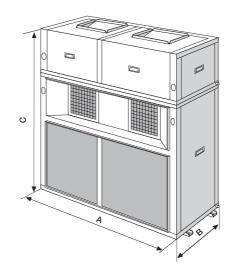
Излучаемый уровень звуковой мощности в помещении – низкошумный агрегат (Lw)

83

79

85

⁽¹⁾ Стандартный нагрев: 1 ступень мощности

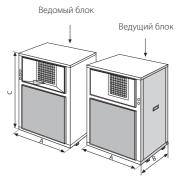

⁽²⁾ Средний нагрев: 2 ступени мощности

⁽³⁾ Высокий нагрев: 2 ступени или плавное регулирование мощности

⁽⁴⁾ Температура воздуха на входе 20°С, температура воды – 90-80°С

Габаритные размеры и масса

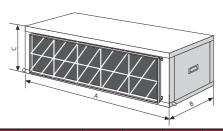
Моноблочный агрегат


COMPACTAIR™	CMC/CMH	20S	25S	30S	358	40\$	45D	55D	70D	85D		
A	MM	1195				1450		2250				
В	MM	803				923			923			
С	MM	2050					2150					
Эксплуатационная масса (стандартный агрегат)	КГ	376	412	424	516	539	630	785	831	883		

Конденсаторный блок

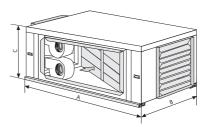
Типоразмеры 20S - 85D

Типоразмер 100D

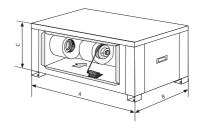


КОНДЕНСАТОРНЫЙ БЛОК	CSC/CSH CDC/CDH	208	25S	30\$	35S	40S	45D	55 D	70D	85 D	100D
A	MM		1195			1445			2250		2900
В	MM	750				870			870		895
С	MM	1410			1410					1470	
Эксплуатационная масса	КГ	262	295	302	357	370	448	529	554	586	870

Габаритные размеры и масса (продолжение)


Воздухообрабатывающая секция

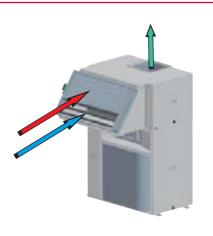
ВОЗДУХООБРАБАТЫВАЮЩАЯ СЕКЦИЯ	CIC/CIH	20S	25S	308	35S	40S	45D	55D	70D	85D	100D
A	MM		1195			1445			2250		2900
В	MM		803			923			923		1103
С	MM	645		740		740		1140			
Эксплуатационная масса	КГ	108	111	115	150	160	170	242	259	276	470

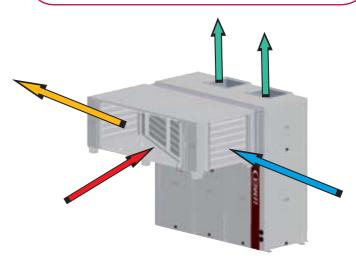


Типоразмеры 55D - 100D

COMPACTAIR™	CMC/CMH	20S	25S	30S	35S	40S	45D	55D	70D	85D	100D
МОДУЛЬ ЕСТЕСТВЕННОГО ОХЛАЖДЕНИЯ	CIC/CIH	20S	25S	30S	35S	40S	45D	55D	70D	85D	100D
А	MM		1195			1445			2250		2900
В	MM		674			697			1150		1150
С	MM	645		740		740		1140			
Эксплуатационная масса	КГ	50	50	50	75	75	75	165	165	165	190

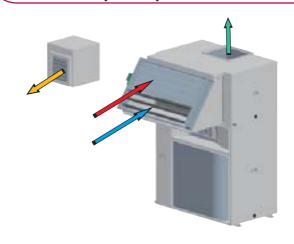
COMPACTAIR™	CMC/CMH	55D 70D		85D	100D
РЕЦИРКУЛЯЦИОННЫЙ ВЕНТИЛЯТОР	CIC/CIH	55D	70D	85D	100D
A	MM		2900		
В	MM		700		
С	MM		1140		
Эксплуатационная масса	КГ	310	310	310	420

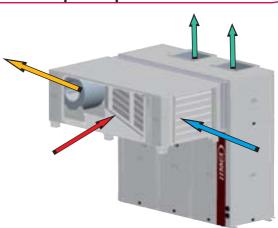

Предельные эксплуатационные характеристики

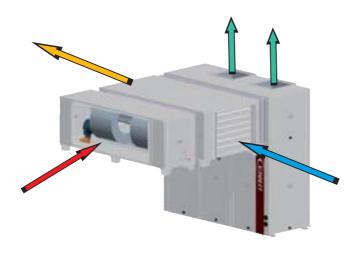

ПРЕДЕЛЬНЫЕ ЭКСПЛУАТАЦИОННЫЕ ХАРАКТЕРИСТИКИ		
Максимальная температура наружного воздуха в режиме охлаждения	°C	+46°C
Минимальная температура наружного воздуха в режиме охлаждения	°C	+15°С / до -15°С с низкотемпературным комплектом
Минимальная температура наружного воздуха в режиме нагрева	°C	-12°C при температуре 20°C в помещении

Принципиальная схема

С экономайзером типоразмеры 20S - 45D






С вытяжным вентилятором типоразмеры 20S - 45D

С вытяжным вентилятором типоразмеры 55D - 100D

С рециркуляционным вентилятором типоразмеры 55D - 100D

\Rightarrow	Наружный воздух
→	Рециркуляционный воздух
\Rightarrow	Вытяжной воздух
\Rightarrow	Приточный воздух

Дополнительные принадлежности и функции

Дополнительный комфорт и энергоэффективность

- Естественное охлаждение: Использование экономайзера (секция смешивания) является наиболее эффективным способом уменьшить эксплуатационные расходы при помощи естественного охлаждения, когда это возможно.
- Низкошумный и низкотемпературный комплект с инверторным управлением:
 Уменьшает излучаемый шум и шум в воздуховоде конденсаторной секции на 9 дБА. Кондиционер может работать в режиме охлаждения до -15°С наружного возлуха.
- Расширенные функции управления: Благодаря специальному алгоритму контроллера CLIMATIC™ 50 и датчикам, возможны две расширенные функции управления: Управление экономайзером по энтальпии и контроль влажности.

Высокое качество воздуха в помешении

- Панельные фильтры класса EU4 / F7: Комплект из предварительного фильтра класса G4 и фильтра класса F7 для очистки рециркуляционного и наружного воздуха. Наличие фильтра класса G4 перед фильтром класса F7 снижает вероятность преждевременного загрязнения фильтра класса F7.
- Датчик загрязнения фильтра: Дифференциальный датчик давления измеряет перепад давления на фильтре и теплообменнике и предупреждает о необходимости замены фильтра, что позволяет снизить энергопотребление и улучшить качество воздуха.
- Управление подмешиванием наружного воздуха: Экономайзер позволяет обеспечить подмешивание необходимого количества наружного воздуха для соответствия требованиям качества воздуха в помещении.
- Вытяжной модуль: обеспечивает снижение избыточного давления воздуха при подаче большого количества наружного воздуха.
- Рециркуляционный модуль: Рециркуляционный вентилятор помогает преодолеть сопротивление рециркуляционного воздуховода, в основном при естественном охлаждении.
- Датчик качества воздуха в помещении: Информирует о качестве воздуха в помещении, позволяет автоматически регулировать минимальный приток наружного воздуха в зависимости от количества людей в помещении. Измеряет уровень CO₂ в воздухе помещения и регулирует подачу наружного воздуха.

Дополнительный нагрев

- Электрический нагреватель: Нагреватели стандартной, средней и высокой мощности нагрева. Ступенчатое или плавное регулирование.
- Водяной воздухонагреватель: включает вентили и пропорциональное регулирование при помощи контроллера CLIMATIC™ 50.

Встраивание в архитектурные конструкции

- Комплект для длинных фреоновых линий: позволяет прокладывать фреоновые магистрали длиной до 65 метров между внутренним и наружным блоками.
- Плавный пуск приточного вентилятора: При пуске агрегата расход воздуха увеличивается постепенно.

Безопасность и долгий срок эксплуатации

- Датчик дыма: Ионная головка датчика реагирует на любой тип дыма. При появлении дыма агрегат останавливается, клапан рециркуляционного воздуха полностью закрывается, а клапан наружного воздуха полностью открывается.
- Главный выключатель: располагается в электрическом щитке конденсаторной секции. При снятой панели агрегат будет выключен.
- Защитное покрытие теплообменника: антикоррозионная обработка теплообменника испарителя или конденсатора. Рекомендуется для применения в морской или загрязненной среде
- Реле контроля фаз: предотвращает включение компрессора при неправильном подключении фаз.

Обслуживание

- Запорные сервисные вентили: облегчают монтаж и сервисное обслуживание. Включают вентиль на газовой и жидкостной линии сплитсистемы.
- Заправка хладагентом: конденсаторный блок поставляется с заводской заправкой хладагентом. Включает запорные сервисные вентили на газовой и жидкостной линии.

Сетевые коммуникации и мониторинг

- Сетевой интерфейс Modbus: Интерфейс Modbus применяется для подключения агрегатов к системе управления инженерным оборудованием здания (ВМS). Никакие дополнительные платы не требуются. Одна плата применяется для подключения одного агрегата.
- Сетевой интерфейс Lonworks: Интерфейс LonTalk* применяется для подключения

- агрегатов к системе управления инженерным оборудованием здания (BMS). Никакие дополнительные платы не требуются. Одна плата применяется для подключения одного агрегата.
- Сетевой интерфейс BACnet: Интерфейс Bacnet® применяется для подключения агрегатов к системе управления инженерным оборудованием здания (BMS). Никакие дополнительные платы не требуются. Одна плата применяется для подключения одного агрегата.
- Плата термостата ТСВ: Обеспечивает дополнительные цифровые входы для управления агрегатом. Контроллер СLIMATIС™ 50 продолжает управлять устройствами и функциями безопасности, оттайкой и естественным охлаждением.
- Система дистанционного мониторинга **ADALINK™:** ADALINK™ - разработка компании LENNOX для мониторинга и управления оборудованием кондиционирования и вентиляции. Максимальное количество 32 агрегата на одном объекте. Система отображает карту объекта с установленными агрегатами, для каждого агрегата показан режим работы. По щелчку на рисунке агрегата пользователь переходит к просмотру параметров работы данного агрегата, журнала аварий и графиков, а также изменению уставок и временных периодов. Вся информация представлена в красивом графическом виде. ADALINK™ может управляться местно через локальную компьютерную сеть или дистанционно при помощи модема.

Дополнительные возможности контроллера CLIMATIC™ 50

- DC 50 Программируемый пульт управления: Удобный в эксплуатации пульт дистанционного управления. Прекрасновписывается в использовании. С пульта DC50 можно изменить настройки таймера, уставки температуры и процентный расход наружного воздуха для каждого периода времени.
- DS 50 Сервисный пульт технического обслуживания: Пульт технического обслуживания является устройством "подключи и работай". С пульта можно настроить до 207 параметров, просмотреть до 188 переменных и до 45 аварийных кодов, а также просмотреть журнал аварий, в котором регистрируются последние 32 аварийных сигналов.
- DM 50 Сетевой программируемый пульт управления: Предоставляет такие же возможности, что и пульт DC50, но позволяет управлять до 12 агрегатами объединенными в сеть.
- Плата расширения ВЕ 50: дополнительные аналоговые и цифровые входы и выходы для контроллера Climatic 50.

Aircoolair™ · 19 → 134 kW

Большие канальные кондиционеры

Основные применения

- Розничные магазины в городской черте
- Торговые центры
- Промышленные предприятия

Преимущества оборудования

- Может устанавливаться в местах с затрудненным доступом к крыше
- Естественное охлаждение и подмешивание наружного воздуха
- Готовое решение с автоматикой для кондиционирования, нагрева и вентиляции
- Двойная сплит-система на кондиционерах большой мощности позволяет снизить мощность двигателей приточных вентиляторов

Общая информация

Кондиционеры AIRCOOLAIR™ используются для охлаждения и нагрева **средних и больших коммерческих помещений,** где затруднен доступ к крыше.

Поставляются системы следующих исполнений:

- Моносплит
- Двойная сплит-система с независимыми воздухообрабатывающими блоками
- Модели только охлаждение и тепловой насос

Основные компоненты

- Центробежные вентиляторы с располагаемым статическим давлением до 400 Па в воздухообрабатывающей секции
- Осевые вентиляторы в конденсаторной секции
- Спиральные компрессоры
- Корпус из оцинкованного стального листа
- Моющиеся фильтры класса G2 F8
- Электропитание 400 B / 3 ф + N / 50 Гц
- Цвет покраски RAL 9002

Система управления

Все агрегаты оснащены:

- Динамическое оттаивание
- Динамическая уставка
- Работа по расписанию

2 типа систем управления с эксклюзивной программой от компании Lennox используются агрегатами данной серии:

• **Контроллер CLIMATIC™ 40:** встроенный сервисный пульт управления и выносной пульт управления для пользователя

Технические характеристики

AIRCOOLAIR™	ANCM/HM	22E	2	26E	32 E	38	E	43E
Режим охлаждения				'				
Холодопроизводительность брутто ⁽¹⁾	кВт	19,8	2	24,2	27,8	36,	,5	41,8
Холодильный коэффициент EER брутто		2,95	2	2,86	2,83	2,9	95	2,84
Потребляемая мощность	кВт	6,72	8	3,45	9,82	12,	,4	14,7
Режим нагрева			<u> </u>	<u> </u>		<u>'</u>	<u>'</u>	
Теплопроизводительность нетто ⁽²⁾	кВт	19,5		25	28,5	36	3	40
Холодильный коэффициент СОР нетто		3		3	2,95	3,0)3	3,03
Потребляемая мощность	кВт	6,5	8	3,33	9,66	11,	,9	13,3
Холодильный контур			<u> </u>	<u> </u>		<u>'</u>	<u>'</u>	
Количество контуров (режим охлаждения)	ШТ.				1/1			
Количество ступеней мощности	ШТ.				1			
Акустические характеристики								
Уровень звукового давления (Lw) ⁽⁴⁾ — Воздухообрабатывающая секция	дБА	74		78	80	80)	83
Уровень звукового давления (Lw) ⁽⁴⁾ – Конденсаторный блок	дБА	76		78	81	80)	81
ВОЗДУХООБРАБАТЫВАЮЩАЯ СЕКЦИЯ	LECM/HM	22E	2	26E	32E	38	E	43E
Максимальная потребляемая мощность	кВт	0,74	1	,45	1,45	1,8	39	2,69
Электрические характеристики	<u> </u>					_	'	
Электропитание	В/фаз/Гц				400/3/50			
Воздухообрабатывающая секция								
Минимальный расход воздуха	м3/ч	3150	4	250	4650	620	00	6950
Максимальный расход воздуха	м3/ч	4100	5	500	6000	805	50	9050
Максимальное располагаемое статическое давление ⁽³⁾	Па	322	3	320	326	32	7	327
КОНДЕНСАТОРНЫЙ БЛОК	KNCM/HM	22E	2	26E	32E	38	E	43E
Максимальная потребляемая мощность	кВт	8,55	10	0,79	12,49	16,0	39	17,74
Электрические характеристики	'						'	
Электропитание	В/фаз/Гц				400-N/3/50)		
Предельные эксплуатационные характеристики								
Максимальная температура наружного воздуха в режиме охлаждения	°C				+ 46°C			
Минимальная температура наружного воздуха в режиме охлаждения	°C	+	15°С / до -	-15°С с ни	зкотемпер	атурным к	комплекто	M
Минимальная температура наружного воздуха в режиме нагрева	°C				ературе 20			
AIRCOOLAIR™	ANCM/HM	52D	64D	76D	86D	112D	128D	152D
Режим охлаждения	7414011/11111	JZD	070	100	COD	1120	1200	1020
Холодопроизводительность брутто ⁽¹⁾	кВт	48,4	57,0	72,2	85,9	104	116	140
Холодильный коэффициент EER брутто	I I I	2,85	2,88	2,91	2,88	2,90	2,96	2,91
Потребляемая мощность	кВт	17	19,8	24,8	29,8	35,7	39	48,2
Режим нагрева	11.01	17	10,0	2-1,0	20,0	00,1		70,2
Теплопроизводительность нетто ⁽²⁾	кВт	49,5	56,5	72,5	80	108	118	137
Холодильный коэффициент СОР нетто	I I I	2,9	3	3	3,01	3,13	3,05	2,82
Потребляемая мощность	кВт	17,1	18,8	24,2	26,7	34,5	38,7	48,6
Холодильный контур		.,,,	10,0	21,2	20,1	01,0	1 00,1	10,0
Количество контуров (режим охлаждения)	ШТ.		2	/ 2			2/3	
Количество ступеней мощности	ШТ.	2	2	2	2	2	2	2
Акустические характеристики						_		
Уровень звукового давления (Lw) ⁽⁴⁾ – Воздухообрабатывающая секция	дБА	86	80	85	87	85	87	89
Уровень звукового давления (Lw) ⁽⁴⁾ – Конденсаторный блок	дБА	81	84	83	84	87	87	90
ВОЗДУХООБРАБАТЫВАЮЩАЯ СЕКЦИЯ	LECM/HM	52D	64D	76D	86D	112D	128D	152D
Максимальная потребляемая мощность	кВт	2,69	2,69	3,63	5,06	5,06	6,38	6,38
Электрические характеристики	1.01	۷,00	2,00	0,00	0,00	0,00	0,00	0,00
Электропитание	В/фаз/Гц				400/3/50			
Воздухообрабатывающая секция	2, 403, 14				100/0/00			
Минимальный расход воздуха	м3/ч	7950	9950	12450	14000	17350	19300	21000
Максимальный расход воздуха Максимальный расход воздуха	M3/4	9750	12850	15090	16725	22450	24950	24750
максимальный расход воздуха Максимальное располагаемое статическое давление ⁽³⁾		320	386	354	346	358	356	346
КОНДЕНСАТОРНЫЙ БЛОК	KNCM/HM	52D	64D	76D	86D	112D	128D	152D
монденсктогный ылок Мэксимэльнэя потрабляемая монность	KNCIVI/HIVI	21.6	25	20.0	25.5	112D 45.6	1200	50.0

кВт

°C

°C

В/фаз/Гц

21,6

25

Максимальная потребляемая мощность

Предельные эксплуатационные характеристики Максимальная температура наружного воздуха в режиме охлаждения

Минимальная температура наружного воздуха в режиме охлаждения

Минимальная температура наружного воздуха в режиме нагрева

Электрические характеристики

Электропитание

48,7

59,9

35,5

400-N/3/50

+ 46°C +15°C / до -15°C с низкотемпературным комплектом

-12°C при температуре 20°C в помещении

45,6

32,8

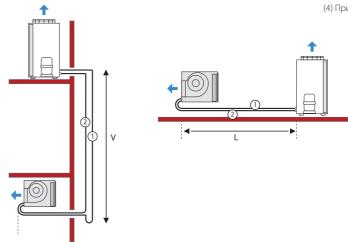
⁽¹⁾ Температура воздуха в помещении: 27°С по сухому термометру, 19°С по влажному термометру - Температура наружного воздуха : 35°С по сухому термометру, 24°С по влажному термометру

⁽²⁾ Температура воздуха в помещении: 20°C по сухому термометру, 12°C по влажному термометру - Температура наружного воздуха: 7°C по сухому термометру, 6°C по влажному термометру

⁽³ Для минимального расхода воздуха

⁽⁴⁾ При условиях Eurovent

Технические характеристики

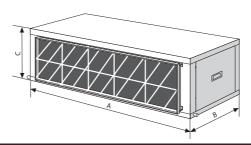

AIRCOOLAIR™	ANCM/HM	52D2	64D2	76D2	86D2	112D2	128D2	
Режим охлаждения								
Холодопроизводительность брутто (1)	кВт	48,4	55,5	73,1	83,5	101	113	
Холодильный коэффициент EER брутто		2,86	2,83	2,95	2,84	2,92	2,96	
Потребляемая мощность	кВт	16,9	19,6	24,8	29,4	34,7	38,2	
Режим нагрева		'		<u>'</u>	<u> </u>	<u>'</u>	•	
Теплопроизводительность нетто ⁽²⁾	кВт	50	57	72	80	108	118	
Холодильный коэффициент СОР нетто		3	2,95	3,03	3,01	3,10	3,06	
Потребляемая мощность	кВт	16,9	19,3	23,8	26,6	34,8	38,6	
Холодильный контур								
Количество контуров (режим охлаждения)Компрессор	ШТ.		2 /	/ 2		2.	/ 3	
Количество ступеней мощности	ШТ.	1+1	1+1	1+1	1+1	2+1	2+1	
BOS DANO CEDA E ATLIBAIOULA G CEVILLAG	LECM	26E-26E	32E-32E	38E-38E	43E-43E	68E-43E	76E-43E	
ВОЗДУХООБРАБАТЫВАЮЩАЯ СЕКЦИЯ	LEHM	26E-26E	32E-32E	38E-38E	43E-43E	68E-44E	76E-44E	
Максимальная потребляемая мощность	кВт	1,45-1,45	1,45-1,45	1,89-1,89	2,69-2,69	2,69-2,69	3,63-2,69	
Электрические характеристики								
Электропитание	В/фаз/Гц			400/	′3/50			
Воздухообрабатывающая секция								
Минимальный расход воздуха	м3/ч	4250+4250	4650+4650	6200+6200	6950+6950	9950+6950	12450+6950	
Максимальный расход воздуха	м3/ч	5500+5500	6000+6000	8050+8050	9050+9050	12850+9050	15090+9050	
Максимальное располагаемое статическое давление ⁽³⁾	Па	2 x 320	2 x 386	2 x 354	2 x 346	2 x 356	2 x 346	
Акустические характеристики								
Уровень звуковой мощности ⁽⁴⁾	дБА	78/78	80/80	80/80	83/83	80/83	85/83	
КОНДЕНСАТОРНЫЙ БЛОК	KNCM/HM	52D2	64D2	76D2	86D2	112D2	128D2	
Максимальная потребляемая мощность	кВт	21,6	25	32,8	35,5	45,6	48,7	
Электрические характеристики								
Электропитание	В/фаз/Гц							
Акустические характеристики								
Уровень звуковой мощности ⁽⁴⁾	дБА	81	84	83	84	87	87	
Предельные эксплуатационные характеристики								
Максимальная температура наружного воздуха в режиме охлаждения	°C				3°C			
Минимальная температура наружного воздуха в режиме охлаждения	°C							
Минимальная температура наружного воздуха в режиме нагрева	°C		-12°С при 1	гемператур	ое 20°С в г	томещении	1	

⁽¹⁾ Температура воздуха в помещении: 27°C по сухому термометру, 19°C по влажному термометру - Температура наружного воздуха : 35°C по сухому термометру, 24°C по влажному термометру

(3) Для минимального расхода воздуха

(4) При условиях Eurovent

Параметры фреоновых трубопроводов

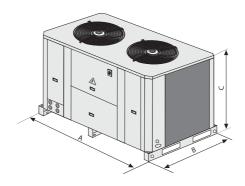


AIRCOOLAIR™	ANCM/HM	22E	26E	32E	38E	43E	52D/D2	64D/D2	76D/D2	86D/D2	112D/D2	128D/D2	152D/D2
бщая длина от 0 до 30 м													
Диаметр труб (контур 1)	Жидкостная линия	1/2"				5,	/8"				3/4"		
диаметр труб (контур т)	Газовая линия	7/8"	1 1	/8"	1 3	/8"	1 1	/8"	1 3	/8"		1 5/8"	
Duamoto toué (voltup 2)	Жидкостная линия		-						5/	8"			3/4"
Диаметр труб (контур 2)	Газовая линия	- -					11	1 1/8" 1 3			3/8"		1 5/8"
Максимальная длина вертикально	го участка												
Длина вертикального участка	M						1	6					
Максимальная общая длина													
Общая длина	M		65										
Максимальное количество изгибов	ШТ.		12										

²⁾ Температура воздуха в помещении: 20°C по сухому термометру, 12°C по влажному термометру - Температура наружного воздуха : 7°C по сухому термометру, 6°C по влажному термометру

Габаритные размеры и масса

Воздухообрабатывающая секция

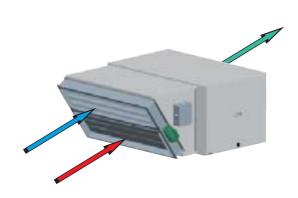


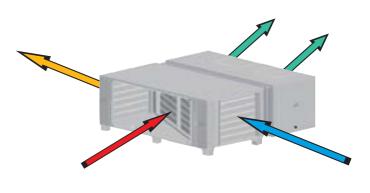
AIRCOOLAIR™	ANCM/HM	22E	26E	32E	38E	43E	
ВОЗДУХООБРАБАТЫВАЮЩАЯ СЕКЦИЯ	LECM/HM	22E	26E	32E	38E	43E	
Α	MM		1195	14	1445		
В	MM		803	923			
С	MM		645	740			
Эксплуатационная масса	КГ	108	111	115	150	160	

AIRCOOLAIR™	ANCM/HM	52D	52D2	64D	64D2	76D	76D2	86D	86 D 2
ВОЗДУХООБРАБАТЫВАЮЩАЯ СЕКЦИЯ	LECM/HM	52D		64D		76D		86D	
A	MM	1445	1195+1195	2250	1195+1195	2250	1445+1445	2250	1445+1445
В	MM	923	803+803	923	803+803	923	923+923	923	923+923
С	MM	740	645+645	740	645+645	740	740+740	740	740+740
Эксплуатационная масса	КГ	170	111+111	242	115+115	259	150+150	276	160+160

AIRCOOLAIR™	ANCM/HM	112D	112D2	128D	128D2	152D
ВОЗДУХООБРАБАТЫВАЮЩАЯ СЕКЦИЯ	LECM	112D	68E+43E	128D	76E+43E	152D
воздухоовраватывающая секция	LEHM	112D	68E+44E	128D	76E+44E	152D
A	MM	2900	2250+1445	2900	2250+1445	2900
В	MM	1103	923+923	1103	923+923	1103
С	MM	1140	740+740	1140	740+740	1140
Эксплуатационная масса	КГ	470	242+160	480	259+160	490

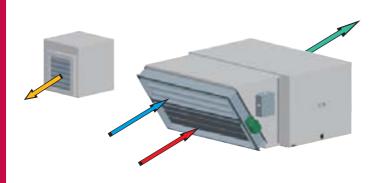
Конденсаторный блок

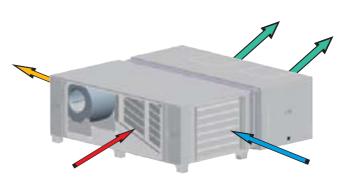

AIRCOOLAIR™ - КОНДЕНСАТОРНЫЙ БЛОК	KNCM/HM	22E	26E	32E	38E	43E				
A	MM		1195							
В	MM	660	980							
С	MM	1375		13	375					
Эксплуатационная масса KNCM	КГ	160	210	216	233	255				
Эксплуатационная масса KNHM	КГ	168	219	221	239	258				

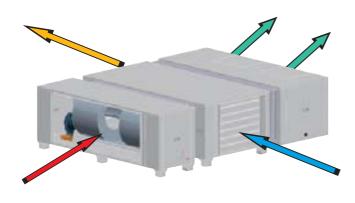

AIRCOOLAIR™ - КОНДЕНСАТОРНЫЙ БЛОК	KNCM/HM	52D/D2	64D/D2	76D/D2	86D/D2	112D/D2	128D/D2	152D	
А	MM		19	60	2250				
В	MM		11	95		1420			
С	MM		13	75		1875			
Эксплуатационная масса KNCM	КГ	443	452	481	520	632	797	906	
Эксплуатационная масса KNHM	КГ	452	463	499	537	748	828	932	

Принципиальные схемы

С экономайзером типоразмеры 22E - 52D


С экономайзером типоразмеры 64D - 152D




С вытяжным вентилятором типоразмеры 22E - 52D

С вытяжным вентилятором типоразмеры 64D - 152D

С рециркуляционным вентилятором типоразмеры 64D - 152D

\Rightarrow	Наружный воздух
→	Рециркуляционный воздух
\Rightarrow	Вытяжной воздух
\Rightarrow	Приточный воздух

Дополнительные принадлежности и функции

Дополнительный комфорт и энергоэффективность

- Естественное охлаждение: Использование экономайзера (секция смешивания) является наиболее эффективным способом уменьшить эксплуатационные расходы при помощи естественного охлаждения, когда это возможно.
- Низкошумный и низкотемпературный комплект с инверторным управлением:
 Уменьшает излучаемый шум и шум в воздуховоде конденсаторной секции на 9 дБА. Кондиционер может работать в режиме охлаждения до -15°C наружного воздуха.
- Резиновые виброизоляторы: Ограничивают передачу вибрации от агрегата к основанию при помощи резиновых амортизаторов под конденсаторным блоком.
- Низкотемпературный комплект до -15°С и комплект для длинных фреоновых линий до 65 м: Пропорциональное управление оборотами вентилятора конденсатора. Обеспечивает работу в режиме охлаждения до -15°С наружного воздуха и оптимизацию стоимости обслуживания. Для безопасности компрессора, данная опция включает комплект для длинных фреоновых линий, чтобы предотвратить попадание жидкого хладагента в компрессор.
- Расширенные функции управления: Благодаря специальному алгоритму контроллера Climatic™ 50 и датчикам, возможны две расширенные функции управления: Управление экономайзером по энтальпии и контроль влажности.

Высокое качество воздуха в

- Моющийся фильтр класса G4: Фильтр можно почистить несколько раз перед его заменой.
- Панельные фильтры класса EU4 / F7: Комплект из предварительного фильтра класса G4 и фильтра класса F7 для очистки рециркуляционного и наружного воздуха. Наличие фильтра класса G4 перед фильтром класса F7 снижает вероятность преждевременного загрязнения фильтра класса F7.
- Датчик загрязнения фильтра: Дифференциальный датчик давления измеряет перепад давления на фильтре и теплообменнике и предупреждает о необходимости замены фильтра, что позволяет снизить энергопотребление и улучшить качество воздуха.
- Управление подмешиванием наружного воздуха: Экономайзер позволяет обеспечить подмешивание необходимого количества наружного воздуха для соответствия требованиям качества воздуха в помещении.
- Вытяжной модуль: обеспечивает снижение избыточного давления воздуха при подаче большого количества наружного воздуха.
- Рециркуляционный модуль:
 Рециркуляционный вентилятор помогает преодолеть сопротивление рециркуляционного воздуховода, в основном при естественном охлаждении.
- Датчик качества воздуха в помещении:
 Информирует о качестве воздуха в помещении,
 позволяет автоматически регулировать

минимальный приток наружного воздуха в зависимости от количества людей в помещении. Измеряет уровень CO_2 в воздухе помещения и регулирует подачу наружного воздуха.

Дополнительный нагрев

- Электрический нагреватель: Нагреватели стандартной, средней и высокой мощности нагрева. Ступенчатое или плавное регулирование.
- Водяной воздухонагреватель: включает вентили и пропорциональное регулирование при помощи контроллера Climatic™ 50.

Встраивание в архитектурные конструкции

- Комплект для длинных фреоновых линий: позволяет прокладывать фреоновые магистрали длиной до 65 метров между внутренним и наружным блоками.
- Плавный пуск приточного вентилятора: При пуске агрегата расход воздуха увеличивается постепенно.

Безопасность и долгий срок эксплуатации

- Датчик дыма: Ионная головка датчика реагирует на любой тип дыма. При появлении дыма агрегат останавливается, клапан рециркуляционного воздуха полностью закрывается, а клапан наружного воздуха полностью открывается.
- Защитная решетка конденсатора: Защищает агрегат во время транспортировки и монтажа.
- Главный выключатель: располагается в электрическом щитке конденсаторной секции.
 При снятой панели агрегат будет выключен.
- Защитное покрытие теплообменника: антикоррозионная обработка теплообменника испарителя или конденсатора. Рекомендуется для применения в морской или загрязненной среде.
- Реле контроля фаз: предотвращает включение компрессора при неправильном подключении фаз.

Обслуживание

- Запорные сервисные вентили: облегчают монтаж и сервисное обслуживание. Включают вентиль на газовой и жидкостной линии сплитсистемы.
- Заправка хладагентом: конденсаторный блок поставляется с заводской заправкой хладагентом. Включает запорные сервисные вентили на газовой и жидкостной линии.

Сетевые коммуникации и мониторинг

• Сетевой интерфейс Modbus: Интерфейс Modbus применяется для подключения агрегатов к системе управления инженерным оборудованием здания (BMS). Никакие дополнительные платы не требуются. Одна плата применяется для подключения одного агрегата.

- Сетевой интерфейс Lonworks: Интерфейс LonTalk* применяется для подключения агрегатов к системе управления инженерным оборудованием здания (BMS). Никакие дополнительные платы не требуются. Одна плата применяется для подключения одного агрегата.
- Сетевой интерфейс BACnet: Интерфейс Bacnet* применяется для подключения агрегатов к системе управления инженерным оборудованием здания (BMS). Никакие дополнительные платы не требуются. Одна плата применяется для подключения одного агрегата.
- Сетевой интерфейс Konnex: Интерфейс Konnex* применяется для подключения агрегатов к системе управления инженерным оборудованием здания (BMS). Никакие дополнительные платы не требуются. Одна плата применяется для подключения одного агрегата.
- Плата термостата ТСВ: Обеспечивает дополнительные цифровые входы для управления агрегатом. Контроллер CLIMATIС™ 50 продолжает управлять устройствами и функциями безопасности, оттайкой и естественным охлаждением.
- Система дистанционного мониторинга Adalink: Adalink - разработка компании LENNOX для мониторинга и управления оборудованием кондиционирования и вентиляции. Максимальное количество 32 агрегата на одном объекте. Система отображает карту объекта с установленными агрегатами, для каждого агрегата показан режим работы. По щелчку на рисунке агрегата пользователь переходит к просмотру параметров работы данного агрегата, журнала аварий и графиков, а также изменению уставок и временных периодов. Вся информация представлена в красивом графическом виде. Adalink может управляться местно через локальную компьютерную сеть или дистанционно при помощи модема.

Дополнительные возможности контроллера Climatic™ 50

- DC 50 Программируемый пульт управления: Удобный в эксплуатации пульт дистанционного управления. Прекрасно вписывается в интерьер любого помещения и легок в использовании. С пульта DC 50 можно изменить настройки таймера, уставки температуры и процентный расход наружного воздуха для каждого периода времени
- DS 50 Сервисный пульт технического обслуживания: Пульт технического обслуживания является устройством "подключи и работай". С пульта можно настроить до 207 параметров, просмотреть до 188 переменных и до 45 аварийных кодов, а также просмотреть журнал аварий, в котором регистрируются последние 32 аварийных сигналов.
- DM 50 Сетевой программируемый пульт управления: Предоставляет такие же возможности, что и пульт DC50, но позволяет управлять до 12 агрегатами объединенными в сеть.
- Плата расширения ВЕ 50: дополнительные аналоговые и цифровые входы и выходы для контроллера Climatic 50.

Программа замены оборудования

Выгодно для бизнеса и окружающей среды

Запланированная программа модернизации оборудования помогает экономить деньги

- Аварийная замена оборудования может негативно отразиться на вашем бизнесе.
- Предварительное планирование позволяет вам выбрать наилучшее оборудование, которое соответствует вашим потребностям
- Не надо тратить деньги на ремонт вашего старого оборудования
- Одновременная замена нескольких агрегатов позволяет снизить затраты на установку одного агрегата

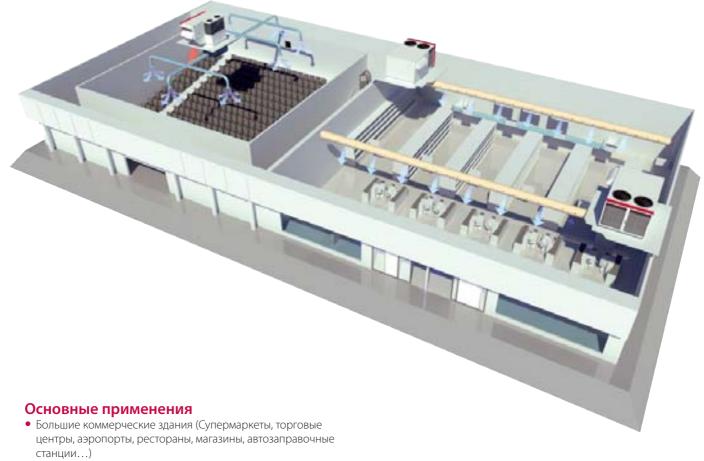
Снижение потребления все дорожающей энергии с помощью программызамены оборудования для вентиляции и кондиционирования

Современные крышные кондиционеры имеют эффективность выше на 40% по сравнению с агрегатами, установленными 15 лет назад. Замена менее эффективного оборудования новым, высокоэффективным позволяет сразу уменьшить расходы по эксплуатации.

Хладагент для рационального применения

Когда это относится к коммерческим системам кондиционирования и вентиляции воздуха, то применение экологически безопасного хладагента R410A - это шаг который приносит как экологические, так и финансовые дивиденды в течение будущих лет

Крышные кондиционеры


• Крышные кондиционеры Воздушное охлаждение

	BALTIC™ & FLEXY™ II	
	22 - 234 κΒτ	42
•	Крышные кондиционеры Водяное охлаждение	
	BALTIC™ & FLEXY™ II	
	47 - 196 κΒτ	52
•	Крышные кондиционеры с утилизацией тепла	
	FX	
	25 - 165 кВт	58

Providing indoor climate comfort

Крышные кондиционеры Воздушное охлаждение

Baltic[™] • 22 → 75 κBτ Flexy[™] • 85 → 234 κBτ

- Театры и кинотеатры
- Промышленные здания и логистические центры

Преимущества оборудования

- Энергоэффективное решение
- Выгодное моноблочное решение для быстрого и простого монтажа
- Различные варианты нагрева
- Управление подмешиванием свежего воздуха и естественное охлаждение
- Большой выбор сетевых интерфейсов

Крышные кондиционеры являются наиболее экономически выгодным решением для высокоэффективного комфортного кондиционирования однообъемных зданий и помещений.

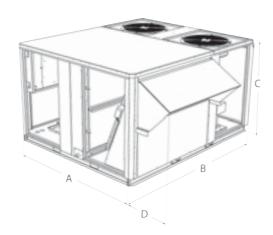
- Первоклассная энергоэффективная система благодаря применению спиральных компрессоров, работающих на экологически безопасном хладагенте R410A. Крышные кондиционеры наиболее современное оборудование компании Lennox для коммерческих применений.
- Расширенный микропроцессорный контроллер CLIMATIC™ 50, разработанный для увеличения энергоэффективности и надежной работы. Контроллер предусматривает работу по схеме ведущий/ведомый и имеет широкие сетевые возможности
- Выгодное моноблочное решение для быстрого и простого монтажа
- Малый вес агрегатов упрощает подъем и установку для любых конфигураций здания
- Различные конфигурации воздушных потоков и разнообразные монтажные рамы для соответствия всем типам зданий
- Возможность установки дополнительных нагревателей с интеллектуальным управлением, позволяет выбирать наиболее эффективный способ нагрева в зависимости от температуры наружного воздуха
- Управление подмешиванием свежего воздуха и естественное охлаждение для здорового и комфортного микроклимата в помещении
- Поставляются кондиционеры следующих исполнений:
 - Только охлаждение
 - Тепловой насос
 - Только охлаждение с газовым нагревателем стандартной или высокой мощности
 - Агрегаты с двойным нагревом выполняют термодинамический и газовый нагрев воздуха

Основные компоненты

- Спиральные компрессоры, хладагент R410A
- Электрический щиток соответствует стандарту EN 60204-1, автоматические выключатели, пронумерованные провода и разъемы
- Негорючая изоляция класса МО
- Большой выбор основных и предварительных воздушных фильтров до класса F7
- Клиноременный вариатор скорости вентилятора входит в стандартную комплектацию всех моделей
- Съемный моющийся поддон для сбора конденсата из алюминия, сифон входит в стандартную комплектацию
- Коррозионностойкий корпус (из оцинкованной стали или алюминия) с заклепками из нержавеющей стали

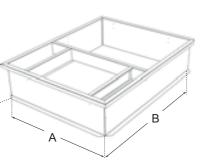
Контроллер Climatic™ 50

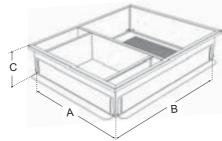
- 16-битный процессор с флэш памятью 21 Мбайт
- Отображает до 50 аварийных сигналов
- 100 настраиваемых параметров и 100 параметров диагностики и мониторинга
- Расширенные функции контроллера: усовершенствованное управление работой компрессоров, динамическое оттаивание, интеллектуальное управление подмешиванием наружного воздуха, автоматический переход на летнее/зимнее время
- Расширенные сетевые возможности: Ведущий/Ведомый, протоколы RS485 Modbus, Lon, Bacnet
- Подключается к системам мониторинга и диспетчеризации компании LENNOX ADALINK, Lennoxvision


Технические характеристики

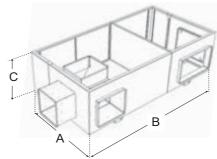
BALTIC™ - BAC/BAH/BAG/BAM		20S	30S	35S	45S
Режим охлаждения BAC/BAG	D	0.1.7	00.0	05.5	147
Колодопроизводительность брутто (1)	кВт	21,7	26,8	35,5	44,7
Коэффициент энергоэффективности EER брутто ⁽³⁾	D	3,32	3,14	3,09	3,42
Потребляемая мощность ВАС	кВт	7,2	9,6	12,9	14,8
Режим нагрева ВАН/ВАМ	D	00.5	0.4.0	05.0	10.0
еплопроизводительность нетто ⁽¹⁾	кВт	20,5	24,9	35,6	43,3
Коэффициент энергоэффективности СОР брутто ⁽²⁾		3,83	3,72	3,83	4,08
Коэффициент энергоэффективности СОР нетто ⁽²⁾		3,02	2,95	3,12	3,21
Дополнительный нагрев -	5 6 (5)			T	
еплопроизводительность газового модуля	кВт - S ⁽⁵⁾	19	19	19	31
еплопроизводительность газового модуля	кВт - Н ⁽⁵⁾	31	31	43	56
еплопроизводительность электрического нагревателя	кВт - S ⁽⁵⁾	12	12	24	27
еплопроизводительность электрического нагревателя	кВт - М ⁽⁵⁾	24	24	36	45
еплопроизводительность электрического нагревателя	кВт - Н ⁽⁵⁾	36	36	48	54
роизводительность водяного воздухонагревателя (20°C на входе / вода 90-70°C)	кВт - Н ⁽⁵⁾	33,7	38,4	53,5	71,2
Колодильный контур					
Кол-во компрессоров / Кол-во контуров	ШТ.	1/1	1/1	2/1	2/1
ип компрессора	Тип	ZP83	ZP103	ZP72	ZP83
Ласса хладагента в контуре	КГ	6,3	6,3	8,2	12,5
Лакс. темп. нар. воздуха при темп. воздуха в помещении 27°С по сух. термометру/ 19°С WB ⁽⁴⁾	°C	46	45	45	46
(арактеристики вентиляторов					
Номинальный расход воздуха	м3/ч	3600	4500	6300	8100
Линимальный расход воздуха	м3/ч	2900	3600	5000	6500
Лаксимальный расход воздуха	м3/ч	4300	5400	7600	9700
Акустические характеристики – напор 100 Па	<u> </u>				
	дБА	86	87	84	85
ровень звуковои мощности (стандартный агрегат) 🗥		76	77	0.4	82
/ровень звуковой мощности (стандартный агрегат) ⁽¹⁾ /ровень звуковой мощности (низкошумный агрегат) ⁽¹⁾	дБА		1 1	81	
/ровень звуковой мощности (низкошумный агрегат) ⁽¹⁾	дБА дБА				
/ровень звуковой мощности (низкошумный агрегат) ⁽¹⁾ /ровень звуковой мощности (приток) ⁽¹⁾	дБА	78	83	82	83
/ровень звуковой мощности (низкошумный агрегат) ⁽¹⁾ /ровень звуковой мощности (приток) ⁽¹⁾ /ровень звуковой мощности (агрегаты с газовым нагревом) ⁽¹⁾	дБА дБА	78 86	83 87	82 85	83 85
Уровень звуковой мощности (низкошумный агрегат) (1) Уровень звуковой мощности (приток) (1) Уровень звуковой мощности (агрегаты с газовым нагревом) (1) Уровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1)	дБА	78 86 81	83 87 86	82 85 85	83 85 85
Уровень звуковой мощности (низкошумный агрегат) (1) Уровень звуковой мощности (приток) (1) Уровень звуковой мощности (агрегаты с газовым нагревом) (1) Уровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1)	дБА дБА	78 86	83 87 86	82 85	83 85
Уровень звуковой мощности (низкошумный агрегат) (1) Уровень звуковой мощности (приток) (1) Уровень звуковой мощности (агрегаты с газовым нагревом) (1) Уровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) ВАLTIC™ - ВАС/ВАН/ВАG/ВАМ Режим охлаждения ВАС/ВАG	дБА дБА дБА	78 86 81	83 87 86	82 85 85	83 85 85 75D
Уровень звуковой мощности (низкошумный агрегат) (1) Уровень звуковой мощности (приток) (1) Уровень звуковой мощности (агрегаты с газовым нагревом) (1) Уровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) В ALTIC™ - ВАС/ВАН/ВАБ/ВАМ Режим охлаждения ВАС/ВАБ Колодопроизводительность брутто (1)	дБА дБА	78 86 81	83 87 86	82 85 85	83 85 85
Уровень звуковой мощности (низкошумный агрегат) (1) Уровень звуковой мощности (приток) (1) Уровень звуковой мощности (агрегаты с газовым нагревом) (1) Уровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) В ALTIC™ - ВАС/ВАН/ВАС/ВАМ Режим охлаждения ВАС/ВАБ Колодопроизводительность брутто (1) Коэффициент энергоэффективности EER брутто (3)	дБА дБА дБА дБА	78 86 81 55S	83 87 86 6 6	82 85 85	83 85 85 75D
Уровень звуковой мощности (низкошумный агрегат) (1) Уровень звуковой мощности (приток) (1) Уровень звуковой мощности (агрегаты с газовым нагревом) (1) Уровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) ВАLTIC™ - ВАС/ВАН/ВАG/ВАМ Режим охлаждения ВАС/ВАG Колодопроизводительность брутто (1) Коэффициент энергоэффективности EER брутто (3) Потребляемая мощность ВАС	дБА дБА дБА	78 86 81 55S	83 87 86 6 6	82 85 85 6D	83 85 85 75D
Уровень звуковой мощности (низкошумный агрегат) (1) Уровень звуковой мощности (приток) (1) Уровень звуковой мощности (агрегаты с газовым нагревом) (1) Уровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) В ALTIC™ - ВАС/ВАН/ВАС/ВАМ Режим охлаждения ВАС/ВАБ Колодопроизводительность брутто (1) Коэффициент энергоэффективности EER брутто (3)	дБА дБА дБА дБА	78 86 81 55S 52,6 3,21	83 87 86 6 6	82 85 85 6D 5,4 35	83 85 85 75D 75,2 3,13
Уровень звуковой мощности (низкошумный агрегат) (1) Уровень звуковой мощности (приток) (1) Уровень звуковой мощности (агрегаты с газовым нагревом) (1) Уровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) ВАLTIC™ - ВАС/ВАН/ВАG/ВАМ Режим охлаждения ВАС/ВАG Колодопроизводительность брутто (1) Коэффициент энергоэффективности EER брутто (3) Потребляемая мощность ВАС	дБА дБА дБА дБА	78 86 81 55S 52,6 3,21	83 87 86 6 68 3,	82 85 85 6D 5,4 35	83 85 85 75D 75,2 3,13
Уровень звуковой мощности (низкошумный агрегат) (1) Уровень звуковой мощности (приток) (1) Уровень звуковой мощности (агрегаты с газовым нагревом) (1) Уровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) ВАLTIC™ - ВАС/ВАН/ВАБ/ВАМ Режим охлаждения ВАС/ВАБ Колодопроизводительность брутто (1) Коэффициент энергоэффективности ЕЕR брутто (3) Потребляемая мощность ВАС Режим нагрева ВАН/ВАМ Теплопроизводительность нетто (1) Коэффициент энергоэффективности СОР брутто (2)	дБА дБА дБА дБА	78 86 81 55S 52,6 3,21 18,5	83 87 86 68 3, 2:	82 85 85 6D 5,4 35 1,8	83 85 85 75D 75,2 3,13 27,4
Уровень звуковой мощности (низкошумный агрегат) (1) Уровень звуковой мощности (приток) (1) Уровень звуковой мощности (агрегаты с газовым нагревом) (1) Уровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) ВАLTIC™ - ВАС/ВАН/ВАБ/ВАМ Режим охлаждения ВАС/ВАБ Колодопроизводительность брутто (1) Коэффициент энергоэффективности EER брутто (3) Потребляемая мощность ВАС Режим нагрева ВАН/ВАМ Теплопроизводительность нетто (1)	дБА дБА дБА дБА	78 86 81 55S 52,6 3,21 18,5	83 87 86 66 3, 2 2	82 85 85 60 60,4 335 1,8	83 85 85 75D 75,2 3,13 27,4
Уровень звуковой мощности (низкошумный агрегат) (1) Уровень звуковой мощности (приток) (1) Уровень звуковой мощности (агрегаты с газовым нагревом) (1) Уровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) ВАLTIC™ - ВАС/ВАН/ВАБ/ВАМ Режим охлаждения ВАС/ВАБ Колодопроизводительность брутто (1) Коэффициент энергоэффективности ЕЕR брутто (3) Потребляемая мощность ВАС Режим нагрева ВАН/ВАМ Теплопроизводительность нетто (1) Коэффициент энергоэффективности СОР брутто (2)	дБА дБА дБА дБА	78 86 81 55S 52,6 3,21 18,5 51,8 3,82	83 87 86 66 3, 2 2	82 85 85 6D 5,4 35 1,8	83 85 85 75D 75,2 3,13 27,4 76,9 3,94
Уровень звуковой мощности (низкошумный агрегат) (1) Уровень звуковой мощности (приток) (1) Уровень звуковой мощности (агрегаты с газовым нагревом) (1) Уровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) ВАLTIC™ - ВАС/ВАН/ВАG/ВАМ Режим охлаждения ВАС/ВАG Колодопроизводительность брутто (1) Коэффициент энергоэффективности ЕЕR брутто (3) Потребляемая мощность ВАС Режим нагрева ВАН/ВАМ Теплопроизводительность нетто (1) Коэффициент энергоэффективности СОР брутто (2) Коэффициент энергоэффективности СОР нетто (2)	дБА дБА дБА дБА	78 86 81 55S 52,6 3,21 18,5 51,8 3,82	83 87 86 66 3,3,22 66 4,4,3,3,	82 85 85 6D 5,4 35 1,8	83 85 85 75D 75,2 3,13 27,4 76,9 3,94
Уровень звуковой мощности (низкошумный агрегат) (1) Уровень звуковой мощности (приток) (1) Уровень звуковой мощности (агрегаты с газовым нагревом) (1) Уровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) В АLTIC™ - ВАС/ВАН/ВАБ/ВАМ Режим охлаждения ВАС/ВАБ Олодопроизводительность брутто (1) Озффициент энергоэффективности ЕЕR брутто (3) Потребляемая мощность ВАС Режим нагрева ВАН/ВАМ Теплопроизводительность нетто (1) Озффициент энергоэффективности СОР брутто (2) Озффициент энергоэффективности СОР нетто (2) Дополнительный нагрев	дБА дБА дБА жВт кВт	78 86 81 55S 52,6 3,21 18,5 51,8 3,82 3,09	83 87 86 66 3, 22 66 4,	82 85 85 6D 5,4 35 1,8	75,2 3,13 27,4 76,9 3,94 3,2
Уровень звуковой мощности (низкошумный агрегат) (1) Уровень звуковой мощности (приток) (1) Уровень звуковой мощности (агрегаты с газовым нагревом) (1) Уровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) В АLTIC™ - ВАС/ВАН/ВАС/ВАМ Режим охлаждения ВАС/ВАБ Олодопроизводительность брутто (1) Озффициент энергоэффективности ЕЕR брутто (3) Потребляемая мощность ВАС Режим нагрева ВАН/ВАМ Еплопроизводительность нетто (1) Озффициент энергоэффективности СОР брутто (2) Озффициент энергоэффективности СОР нетто (2) Дополнительный нагрев Еплопроизводительность газового модуля	дБА дБА дБА дБА кВт кВт	78 86 81 55S 52,6 3,21 18,5 51,8 3,82 3,09	83 87 86 66 3, 22 66 4, 3,	82 85 85 5,4 35 1,8 5,8 04 32	83 85 85 75D 75,2 3,13 27,4 76,9 3,94 3,2
Уровень звуковой мощности (низкошумный агрегат) (1) Уровень звуковой мощности (приток) (1) Уровень звуковой мощности (агрегаты с газовым нагревом) (1) Уровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) В АLTIC™ - ВАС/ВАН/ВАС/ВАМ Режим охлаждения ВАС/ВАБ Колодопроизводительность брутто (1) Коэффициент энергоэффективности ЕЕR брутто (3) Потребляемая мощность ВАС Режим нагрева ВАН/ВАМ Теплопроизводительность нетто (1) Коэффициент энергоэффективности СОР брутто (2) Коэффициент энергоэффективности СОР нетто (2) Дополнительный нагрев Теплопроизводительность газового модуля Теплопроизводительность газового модуля	дБА дБА дБА дБА кВт кВт кВт - S (5) кВт - H (6)	78 86 81 55S 52,6 3,21 18,5 51,8 3,82 3,09	83 87 86 66 3, 22 66 4, 3,	82 85 85 5,4 35 1,8 04 32	83 85 85 75D 75,2 3,13 27,4 76,9 3,94 3,2
Уровень звуковой мощности (низкошумный агрегат) (1) Уровень звуковой мощности (приток) (1) Уровень звуковой мощности (агрегаты с газовым нагревом) (1) Уровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) ВАLТІС™ - ВАС/ВАН/ВАС/ВАМ Режим охлаждения ВАС/ВАБ Колодопроизводительность брутто (1) Коэффициент энергоэффективности ЕЕR брутто (3) Потребляемая мощность ВАС Режим нагрева ВАН/ВАМ Теплопроизводительность нетто (1) Коэффициент энергоэффективности СОР брутто (2) Коэффициент энергоэффективности СОР нетто (2) Пополнительный нагрев Теплопроизводительность газового модуля Теплопроизводительность злектрического нагревателя	дБА дБА дБА дБА кВт кВт кВт - S (5) кВт - H (6) кВт - S (5)	78 86 81 55S 52,6 3,21 18,5 51,8 3,82 3,09 31 56 27	83 87 86 66 3, 22 68 4, 3,	82 85 85 6D 5,4 35 1,8 04 32 66 12	83 85 85 75D 75,2 3,13 27,4 76,9 3,94 3,2 56 112 27
Уровень звуковой мощности (низкошумный агрегат) (1) Уровень звуковой мощности (приток) (1) Уровень звуковой мощности (агрегаты с газовым нагревом) (1) Уровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) ВАLТІС™ - ВАС/ВАН/ВАС/ВАМ Режим охлаждения ВАС/ВАБ Колодопроизводительность брутто (1) Коэффициент энергоэффективности ЕЕR брутто (3) Потребляемая мощность ВАС Режим нагрева ВАН/ВАМ Теплопроизводительность нетто (1) Коэффициент энергоэффективности СОР брутто (2) Коэффициент энергоэффективности СОР нетто (2) Пополнительный нагрев Теплопроизводительность газового модуля Теплопроизводительность электрического нагревателя Теплопроизводительность электрического нагревателя Теплопроизводительность электрического нагревателя	дБА дБА дБА дБА кВт кВт кВт - S (5) кВт - H (6) кВт - S (5) кВт - M (5)	78 86 81 55S 52,6 3,21 18,5 51,8 3,82 3,09 31 56 27 45	83 87 86 66 3, 22 66 4, 3,	82 85 85 6D 5,4 35 1,8 04 32 66 12 77	83 85 85 75D 75,2 3,13 27,4 76,9 3,94 3,2 56 112 27 45
Уровень звуковой мощности (низкошумный агрегат) (1) Уровень звуковой мощности (приток) (1) Уровень звуковой мощности (агрегаты с газовым нагревом) (1) Уровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) ВАLТІС™ - ВАС/ВАН/ВАС/ВАМ Режим охлаждения ВАС/ВАБ Олодопроизводительность брутто (1) Озффициент энергоэффективности ЕЕR брутто (3) Потребляемая мощность ВАС Режим нагрева ВАН/ВАМ Теплопроизводительность нетто (1) Озффициент энергоэффективности СОР брутто (2) Озффициент энергоэффективности СОР нетто (2) Пополнительный нагрев Теплопроизводительность газового модуля Теплопроизводительность электрического нагревателя Теплопроизводительность электрического нагревателя	ДБА ДБА ДБА КВТ КВТ - S (5) КВТ - H (6) КВТ - S (5) КВТ - H (5)	78 86 81 55\$ 52,6 3,21 18,5 51,8 3,82 3,09 31 56 27 45 54	83 87 86 66 3, 22 66 4, 3,	82 85 85 85 5,4 335 1,8 04 32 66 112 27	83 85 85 75D 75,2 3,13 27,4 76,9 3,94 3,2 56 112 27 45 54
Уровень звуковой мощности (низкошумный агрегат) (1) Уровень звуковой мощности (приток) (1) Уровень звуковой мощности (агрегаты с газовым нагревом) (1) Уровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) В АLTIC™ - ВАС/ВАН/ВАС/ВАМ Режим охлаждения ВАС/ВАБ Колодопроизводительность брутто (1) Коэффициент энергоэффективности ЕЕR брутто (3) Потребляемая мощность ВАС Режим нагрева ВАН/ВАМ Теплопроизводительность нетто (1) Коэффициент энергоэффективности СОР брутто (2) Коэффициент энергоэффективности СОР нетто (2) Дополнительный нагрев Теплопроизводительность газового модуля Теплопроизводительность электрического нагревателя	ДБА ДБА ДБА КВТ КВТ - S (5) КВТ - H (6) КВТ - S (5) КВТ - H (5)	78 86 81 55\$ 52,6 3,21 18,5 51,8 3,82 3,09 31 56 27 45 54	83 87 86 68 3, 2: 68 4, 3, 1 1 2 2 4	82 85 85 85 5,4 335 1,8 04 32 66 112 27	83 85 85 75D 75,2 3,13 27,4 76,9 3,94 3,2 56 112 27 45 54
Гровень звуковой мощности (низкошумный агрегат) (1) Гровень звуковой мощности (приток) (1) Гровень звуковой мощности (агрегаты с газовым нагревом) (1) Гровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) Гровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) В АLTIC™ - ВАС/ВАН/ВАБ/ВАМ Режим охлаждения ВАС/ВАБ Колодопроизводительность брутто (1) Коэффициент энергоэффективности ЕЕR брутто (3) Потребляемая мощность ВАС Режим нагрева ВАН/ВАМ Теплопроизводительность нетто (1) Тоэффициент энергоэффективности СОР брутто (2) Торофициент энергоэффективности СОР нетто (2) Дополнительный нагрев Теплопроизводительность газового модуля Теплопроизводительность электрического нагревателя Теплопроизводительность водяного воздухонагревателя (20°С на входе / вода 90-70°С) Тором Кол-во компрессоров / Кол-во контуров	дБА дБА дБА дБА кВт кВт кВт - S (5) кВт - H (6) кВт - M (5) кВт - H (5) кВт - H (5)	78 86 81 55S 52,6 3,21 18,5 51,8 3,82 3,09 31 56 27 45 54 75,5	83 87 86 68 3, 2: 68 4, 3, 1 1 2 4 5	82 85 85 85 66 12 7,6	83 85 85 75D 75,2 3,13 27,4 76,9 3,94 3,2 56 112 27 45 54 118,1
Гровень звуковой мощности (низкошумный агрегат) (1) Гровень звуковой мощности (приток) (1) Гровень звуковой мощности (агрегаты с газовым нагревом) (1) Гровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) Гровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) В АLTIC™ - ВАС/ВАН/ВАБ/ВАМ Режим охлаждения ВАС/ВАБ Колодопроизводительность брутто (1) Коэффициент энергоэффективности ЕЕR брутто (3) Потребляемая мощность ВАС Режим нагрева ВАН/ВАМ Теплопроизводительность нетто (1) Коэффициент энергоэффективности СОР брутто (2) Коэффициент энергоэффективности СОР нетто (2) Дополнительный нагрев Теплопроизводительность газового модуля Теплопроизводительность электрического нагревателя Теплопроизводительность водяного воздухонагревателя (20°С на входе / вода 90-70°С) Колодильный контур Кол-во компрессора Кол-во компрессора	дБА	78 86 81 55S 52,6 3,21 18,5 51,8 3,82 3,09 31 56 27 45 54 75,5	83 87 86 66 3, 22 66 4, 3, 1 1 2 2 2 2 2 2 10	82 85 85 60 6,4 35 1,8 04 32 66 12 27 47,6	83 85 85 75D 75,2 3,13 27,4 76,9 3,94 3,2 56 112 27 45 54 118,1
Гровень звуковой мощности (низкошумный агрегат) (1) Гровень звуковой мощности (приток) (1) Гровень звуковой мощности (агрегаты с газовым нагревом) (1) Гровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) Гровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) ВАLTIC™ - ВАС/ВАН/ВАБ/ВАМ ГРЕЖИМ ОХЛАЖДЕНИЯ ВАС/ВАБ КОЛОДОПРОИЗВОДИТЕЛЬНОСТЬ БРУТТО (1) КОЭФФИЦИЕНТ ЭНЕРГОЭФФЕКТИВНОСТИ ЕЕК БРУТТО (3) ПОТРЕБЛЯЕМАЯ МОТЕПЛОПОВИВНОЕМ (1) ГОЭФФИЦИЕНТ ЭНЕРГОЭФФЕКТИВНОСТИ СОР БРУТТО (2) КОЭФФИЦИЕНТ ЭНЕРГОЭФФЕКТИВНОСТИ СОР НЕТТО (2) ПОПОЛНИТЕЛЬНЫЙ НАГРЕВ ГЕПЛОПРОИЗВОДИТЕЛЬНОСТЬ ГАЗОВОГО МОДУЛЯ ГЕПЛОПРОИЗВОДИТЕЛЬНОСТЬ ЭЛЕКТРИЧЕСКОГО НАГРЕВАТЕЛЯ ГЕПЛОПРОИЗВОДИТЕЛЬНОСТЬ ВОДЯНОГО ВОЗДУХОНАГРЕВАТЕЛЯ ГЕПЛОПРОИЗВОДИТЕЛЬНОСТЬ ВОДЯНОГО ВОЗДУХОНАГРЕВАТЕЛЯ ГЕПЛОПРОИЗВОДИТЕЛЬНОСТЬ ВОЗДУХОНАГРЕВАТЕЛЯ ГЕПЛОПРОИЗВОДИТЕЛЬНОСТЬ ВОЗДУХОНАГРЕВАТЕЛЯ ГЕПЛОПРОИЗВОДИТЕЛЬНОСТЬ ВОЗДУХНАГИЯ ГЕПЛОПРОВОТЬ ВОЗДУХНАГИЯ ГЕПЛОПРОВОТЬ ВОЗДУХНАГИЯ ГЕПЛОПРОВОТЬ ВОЗДУХНАГИЯ ГЕПЛОПРОВОТЬ ВОЗДУХНАГИЯ ГЕПЛОПРОВОТЬ ВОЗДУХНАГИЯ ГЕПЛОПРОВОТЬ ВОЗДУХНАТЬ ВОЗДУХНАГИЯ ГЕПЛОПРОВОТЬ ВОЗДУХНАТЬ ВОЗДУХНАТЬ ВОЗДУХНАТЬ ВОЗД	ДБА	78 86 81 55S 52,6 3,21 18,5 51,8 3,82 3,09 31 56 27 45 54 75,5	83 87 86 66 3, 22 66 4, 3, 5 1 1 2 2 2 2 2 2 10	82 85 85 85 5,4 35 1,8 5,8 04 32 66 12 7,6 44 7,6	83 85 85 75D 75,2 3,13 27,4 76,9 3,94 3,2 56 112 27 45 54 118,1 2/2 ZP154 11
Гровень звуковой мощности (низкошумный агрегат) (1) Гровень звуковой мощности (приток) (1) Гровень звуковой мощности (агрегаты с газовым нагревом) (1) Гровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) Гровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) Гровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) Гровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) Гровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) Гровень звуковой мощность брутто (1) Гровень звуковой мощность брутто (1) Грофициент энергоэффективности ЕЕR брутто (3) Гроребляемая мощность ВАС Грофициент энергоэффективности СОР брутто (2) Грофициент энергоэффективности СОР нетто (2) Грополнительный нагрев Геплопроизводительность газового модуля Геплопроизводительность электрического нагревателя Геплопроизводительность электрического нагревателя Геплопроизводительность электрического нагревателя Геплопроизводительность электрического нагревателя Геплопроизводительность водяного воздухонагревателя (20°С на входе / вода 90-70°С) Грозводительность водяного воздухонагревателя (20°С на входе / вода 90-70°С) Грозводительность водяного воздухонагревателя (20°С на входе / вода 90-70°С) Грозводительность водяного воздухонагревателя (20°С на входе / вода 90-70°С) Грозводительность водяного воздухонагревателя (20°С на входе / вода 90-70°С) Грозводительность водяного воздухонагревателя (20°С на входе / вода 90-70°С) Грозводительность водяного воздухонагревателя (20°С на входе / вода 90-70°С) Грозводительность водяного воздухонагревателя (20°С на входе / вода 90-70°С) Грозводительность водяного воздухонагревателя (20°С на входе / вода 90-70°С)	дБА	78 86 81 55S 52,6 3,21 18,5 51,8 3,82 3,09 31 56 27 45 54 75,5	83 87 86 66 3, 22 66 4, 3, 5 1 1 2 2 2 2 2 2 10	82 85 85 60 6,4 35 1,8 04 32 66 12 27 47,6	83 85 85 75D 75,2 3,13 27,4 76,9 3,94 3,2 56 112 27 45 54 118,1
Гровень звуковой мощности (низкошумный агрегат) (1) Гровень звуковой мощности (приток) (1) Гровень звуковой мощности (агрегаты с газовым нагревом) (1) Гровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) Гровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) Гровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) Гровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) Гровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) Гровень звуковой мощность брутто (1) Гровень звуковой мощность брутто (1) Гровень звуковой мощность БВС Грофициент энергоэффективности ЕЕR брутто (2) Грофициент энергоэффективности СОР брутто (2) Грофициент энергоэффективности СОР нетто (2) Грополнительный нагрев Геплопроизводительность газового модуля Геплопроизводительность электрического нагревателя Геплопроизводительность электрического нагревателя Геплопроизводительность электрического нагревателя Геплопроизводительность электрического нагревателя Геплопроизводительность водяного воздухонагревателя (20°С на входе / вода 90-70°С) Грозводительность водяного воздухонагревателя (20°С на входе / вода 90-70°С) Грозводительность водяного воздухонагревателя (20°С на входе / вода 90-70°С) Грозводительность водяного воздухонагревателя (20°С на входе / вода 90-70°С) Грозводительность водяного воздухонагревателя (20°С на входе / вода 90-70°С) Грозводительность водяного воздухонагревателя (20°С на входе / вода 90-70°С) Грозводительность водяного воздухонагревателя (20°С на входе / вода 90-70°С) Грозводительность водяного воздухонагревателя (20°С на входе / вода 90-70°С) Грозводительность водяного воздухонагревателя (20°С на входе / вода 90-70°С) Грозводительность водяного воздухонагревателя (20°С на входе / вода 90-70°С) Грозводительность водяного воздухонагревателя (20°С на входе / вода 90-70°С)	дБА	78 86 81 55S 52,6 3,21 18,5 51,8 3,82 3,09 31 56 27 45 54 75,5 2/1 ZP103 12,5 45	83 87 86 66 3, 22 66 4, 3, 21 10 22 27 27 21 24 24 25 10	82 85 85 85 5,4 35 1,8 04 32 66 12 77 55 64 7,6	83 85 85 75D 75,2 3,13 27,4 76,9 3,94 3,2 56 112 27 45 54 118,1 2/2 ZP154 11 45
ровень звуковой мощности (низкошумный агрегат) (1) ровень звуковой мощности (приток) (1) ровень звуковой мощности (агрегаты с газовым нагревом) (1) ровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) ровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) ровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) ровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) ровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) ровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) ровень звуковой мощности БАС режим охлаждения ВАС/ВАБ роминиент энергоэффективности ЕЕК брутто (3) рогороваричент энергоэффективности СОР брутто (2) розффициент энергоэффективности СОР брутто (2) розффициент энергоэффективности СОР нетто (2) розффициент энергоэффективности СОР нетто (2) розффициент энергоэффективности СОР нетто (2) розфрициент энергоэффективности СОР брутто (2) розфрициент энергоэффективности СОР нетто (2) розфрициент энергоэффективности СОР нетто (2) розфрициент энергоэффективности СОР брутто (2) розфрициент энергоэффективности СОР нетто (2) розфрициент энергоэффективности (2) розфрициент энергоэф (2) розфрициент энергоэф (3) розфрициент энергоэф (3) розфрициент энергоэф (4) розфрициент энергоэф	ДБА	78 86 81 558 52,6 3,21 18,5 51,8 3,82 3,09 31 56 27 45 54 75,5 2/1 ZP103 12,5 45	83 87 86 66 3, 22 66 4, 3, 1 1 2 2 2 2 2 10 2 2 11 2 2 11	82 85 85 85 5,4 335 1,8 04 32 66 12 77 55 64 77,6	83 85 85 75D 75,2 3,13 27,4 76,9 3,94 3,2 56 112 27 45 54 118,1 2/2 ZP154 11 45
Гровень звуковой мощности (низкошумный агрегат) (1) Гровень звуковой мощности (приток) (1) Гровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) Гровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) Гровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) Гровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) Гровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) Гровень звуковой мощность (приток) (агрегаты с газовым нагревом) (1) Гровень звуковой мощность брутто (1) Гровень звуковой мощность брутто (1) Гровень звуковой мощность брутто (1) Гровень звуковой мощность БВС Грофициент энергоэффективности ЕЕК брутто (3) Грофициент энергоэффективности СОР брутто (2) Грофициент энергоэффективности СОР нетто (2) Грополнительный нагрев Геплопроизводительность газового модуля Геплопроизводительность газового модуля Геплопроизводительность электрического нагревателя Геплопроизводительность электрического нагревателя Гроизводительность электрического нагревателя Гроизводительность водяного воздухонагревателя (20°С на входе / вода 90-70°С) Громиньный контур Громиньный контур Громинальный контуре Громинальный расход воздуха в помещении 27°С по сух. термометру/ 19°С WВ (4) Громинальный расход воздуха Громинальный расход воздуха	ДБА	78 86 81 558 52,6 3,21 18,5 51,8 3,82 3,09 31 56 27 45 54 75,5 2/1 ZP103 12,5 45 9000 7200	83 87 86 68 3, 22 68 4, 3, 21 11 22 24 24 10 27 27 154 11 48	82 85 85 85 5,4 335 1,8 04 32 66 112 27 7,6 7,6 7,6 7,6 16 65 600	83 85 85 75D 75,2 3,13 27,4 76,9 3,94 3,2 56 112 27 45 54 118,1 2/2 ZP154 11 45
Гровень звуковой мощности (низкошумный агрегат) (1) Гровень звуковой мощности (приток) (1) Гровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) Гровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) Гровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) Гровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) Гровень звуковой мощность (приток) (агрегаты с газовым нагревом) (1) Гровень звуковой мощность (приток) (агрегаты с газовым нагревом) Гровень звуковой мощность (приток) (агрегаты с газовым нагревом) (1) Гровень звуковой мощность брутто (1) Гровень звуковой мощность брутто (1) Гровень звуковой мощность брутто (1) Гровень звуковой мощность БВС Гром (приток) (1) Гровень звуковой мощность (1) Гром (1) Гровень звуковой мощность (1) Гровень звуковой мощность (1) Гров (1) Гров (1) Гров (1) Гром (1) Гров (1) Гром (1) Гров (1) Гров (1) Гром (1) Гров (1) Гров (1) Гром (1) Гром (1) Гров (1) Гров (1) Гром (1) Гром (1) Гров (1) Гром (1	ДБА	78 86 81 558 52,6 3,21 18,5 51,8 3,82 3,09 31 56 27 45 54 75,5 2/1 ZP103 12,5 45	83 87 86 68 3, 22 68 4, 3, 21 11 22 24 24 10 27 27 154 11 48	82 85 85 85 5,4 335 1,8 04 32 66 12 77 55 64 77,6	83 85 85 75D 75,2 3,13 27,4 76,9 3,94 3,2 56 112 27 45 54 118,1 2/2 ZP154 11 45
Ровень звуковой мощности (низкошумный агрегат) (1) Ровень звуковой мощности (приток) (1) Ровень звуковой мощности (агрегаты с газовым нагревом) (1) Ровень звуковой мощности (1) Ровень звуковой (1) Ровень звуковой мощности (1) Ровень звуков	дБА	78 86 81 55S 52,6 3,21 18,5 51,8 3,82 3,09 31 56 27 45 54 75,5 2/1 ZP103 12,5 45 9000 7200 10800	83 87 86 68 3, 2	82 85 85 85 5,4 335 1,8 5,8 04 32 66 112 27 45 64 7,6	83 85 85 75D 75,2 3,13 27,4 76,9 3,94 3,2 56 112 27 45 54 118,1 2/2 ZP154 11 45
Ровень звуковой мощности (низкошумный агрегат) (1) Ровень звуковой мощности (приток) (1) Ровень звуковой мощности (агрегаты с газовым нагревом) (1) Ровень звуковой мощности (агрегаты с газовым нагревом) (1) ВАLТІС™ - ВАС/ВАН/ВАБ/ВАМ Режим охлаждения ВАС/ВАБ Колодопроизводительность брутто (1) Коэффициент энергоэффективности ЕЕК брутто (3) Потребляемая мощность ВАС Режим нагрева ВАН/ВАМ Теплопроизводительность нетто (1) Коэффициент энергоэффективности СОР брутто (2) Коэффициент энергоэффективности СОР нетто (2) Дополнительный нагрев Теплопроизводительность газового модуля Теплопроизводительность электрического нагревателя Теплопроизводительность электрического нагревателя Теплопроизводительность электрического нагревателя Теплопроизводительность оздухонагревателя (20°С на входе / вода 90-70°С) Колодильный контур Кол-во компрессора Масса хладагента в контуре Макс. темп. нар. воздуха при темп. воздуха в помещении 27°С по сух. термометру/ 19°С WВ (4) Карактеристики вентиляторов Номинальный расход воздуха Минимальный расход воздуха Минимальный расход воздуха Максимальный расход воздуха	дБА	78 86 81 55S 52,6 3,21 18,5 51,8 3,82 3,09 31 56 27 45 54 75,5 2/1 ZP103 12,5 45 9000 7200 10800	83 87 86 68 3, 2: 68 4, 3, 3, 2: 5 10 2 2 2 2 4 10 11 86 13	82 85 85 85 60 60 60 60 60 60 60 60 60 60 60	83 85 85 75D 75,2 3,13 27,4 76,9 3,94 3,2 56 112 27 45 54 118,1 2/2 ZP154 11 45 14200 10000 16000
Ровень звуковой мощности (низкошумный агрегат) (1) Ровень звуковой мощности (приток) (1) Ровень звуковой мощности (агрегаты с газовым нагревом) (1) Ровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) ВАLТІС™ - ВАС/ВАН/ВАД/ВАМ Режим охлаждения ВАС/ВАВ Колодопроизводительность брутто (1) Коэффициент энергоэффективности ЕЕК брутто (3) Потребляемая мощность ВАС Режим нагрева ВАН/ВАМ Теплопроизводительность нетто (1) Коэффициент энергоэффективности СОР брутто (2) Коэффициент энергоэффективности СОР нетто (2) Дополнительный нагрев Теплопроизводительность газового модуля Теплопроизводительность электрического нагревателя Теплопроизводительность электрического нагревателя Теплопроизводительность электрического нагревателя Теплопроизводительность электрического нагревателя Теплопроизводительность оздухонагревателя (20°С на входе / вода 90-70°С) Колодильный контур Кол-во компрессора Масса хладагента в контуре Макс. темп. нар. воздуха при темп. воздуха в помещении 27°С по сух. термометру/ 19°С WВ (4) Карактеристики вентиляторов Номинальный расход воздуха Минимальный расход воздуха Максимальный расход воздуха Морень звуковой мощности (стандартный агрегат) (1) Ровень звуковой мощности (стандартный агрегат) (1)	ДБА	78 86 81 55S 52,6 3,21 18,5 51,8 3,82 3,09 31 56 27 45 54 75,5 2/1 ZP103 12,5 45 9000 7200 10800	83 87 86 68 3, 2: 68 4, 3, 3, 2: 5 10 2 2 2 2 4 10 11 86 13	82 85 85 85 60 60 60 60 60 60 60 60 60 60 60 60 60	83 85 85 75D 75,2 3,13 27,4 76,9 3,94 3,2 56 112 27 45 54 118,1 2/2 ZP154 11 45 14200 10000 16000
Гровень звуковой мощности (низкошумный агрегат) (1) Гровень звуковой мощности (приток) (1) Гровень звуковой мощности (приток) (1) Гровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) Гровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) ВАСТІСТ ВАС/ВАН/ВАС/ВАМ Режим охлаждения ВАС/ВАБ Колодопроизводительность брутто (1) Коэффициент энергоэффективности EER брутто (3) Потребляемая мощность ВАС Режим нагрева ВАН/ВАМ Теплопроизводительность нетто (1) Коэффициент энергоэффективности СОР брутто (2) Коэффициент энергоэффективности СОР нетто (2) Дополнительный нагрев Теплопроизводительность газового модуля Теплопроизводительность злектрического нагревателя Теплопроизводительность электрического нагревателя Теплопроизводительность электрического нагревателя Теплопроизводительность электрического нагревателя Теплопроизводительность электрического нагревателя Теплопроизводительность вознитого воздухонагревателя (20°C на входе / вода 90-70°C) Колодильный контур Кол-во компрессора Масса хладагента в контуре Масса хладагента в контуре Масса хладагента в контуре Масса хладагента в контуров Номинальный расход воздуха Минимальный расход воздуха Минимальный расход воздуха Максимальный расход воздуха Морень звуковой мощности (стандартный агрегат) (1) Гровень звуковой мощности (низкошумный агрегат) (1)	ДБА	78 86 81 55S 52,6 3,21 18,5 51,8 3,82 3,09 31 56 27 45 54 75,5 2/1 ZP103 12,5 45 9000 7200 10800 86 82 84	83 87 86 68 3, 2: 68 4, 3, 5 11 22 2 2 2 2 2 10 2 2 11 11 86 13 13	82 85 85 85 60 60 60 60 60 60 60 60 60 60 60 60 60	83 85 85 75D 75,2 3,13 27,4 76,9 3,94 3,2 56 112 27 45 54 118,1 2/2 ZP154 11 45 14200 10000 16000
Ровень звуковой мощности (низкошумный агрегат) (1) Ровень звуковой мощности (приток) (1) Ровень звуковой мощности (агрегаты с газовым нагревом) (1) Ровень звуковой мощности (приток) (агрегаты с газовым нагревом) (1) ВАLТІС™ - ВАС/ВАН/ВАД/ВАМ Режим охлаждения ВАС/ВАВ Колодопроизводительность брутто (1) Коэффициент энергоэффективности ЕЕК брутто (3) Потребляемая мощность ВАС Режим нагрева ВАН/ВАМ Теплопроизводительность нетто (1) Коэффициент энергоэффективности СОР брутто (2) Коэффициент энергоэффективности СОР нетто (2) Дополнительный нагрев Теплопроизводительность газового модуля Теплопроизводительность электрического нагревателя Теплопроизводительность электрического нагревателя Теплопроизводительность электрического нагревателя Теплопроизводительность электрического нагревателя Теплопроизводительность оздухонагревателя (20°С на входе / вода 90-70°С) Колодильный контур Кол-во компрессора Масса хладагента в контуре Макс. темп. нар. воздуха при темп. воздуха в помещении 27°С по сух. термометру/ 19°С WВ (4) Карактеристики вентиляторов Номинальный расход воздуха Минимальный расход воздуха Максимальный расход воздуха Морень звуковой мощности (стандартный агрегат) (1) Ровень звуковой мощности (стандартный агрегат) (1)	ДБА	78 86 81 55S 52,6 3,21 18,5 51,8 3,82 3,09 31 56 27 45 54 75,5 2/1 ZP103 12,5 45 9000 7200 10800	83 87 86 68 3, 2- 68 4, 3, 3, 5 11 22 24 5 10 22 27154 11 86 13 13	82 85 85 85 60 60 60 60 60 60 60 60 60 60 60 60 60	83 85 85 75D 75,2 3,13 27,4 76,9 3,94 3,2 56 112 27 45 54 118,1 2/2 ZP154 11 45 14200 10000 16000

⁽¹⁾ Все данные приведены при условиях Eurovent, электропитание 400В/3Ф/50Гц, номинальные расход воздуха и свободный напор (2) включая компрессоры, вентиляторы конденсатора (осевые) и приточный вентилятор (центробежный) (3) СОР нетто = Холодопроизводительность нетто / Общая потребляемая мощность (4) Предельные эксплуатационные условия приведены при устойчивой работе агрегатов при данных температурных условия (5) S = стандартный нагрев - M = средний нагрев - H = высокий нагрев Крышные кондиционеры ВАСПС™ участвуют в программе RT сертификации Eurovent (www.eurovent-certification.com)


Габаритные размеры и масса

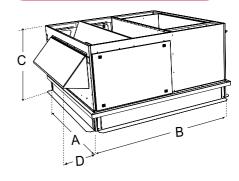

BALTIC™ BAC/BAH/BAG/BAM			30S	35S	45S	55S	65D	75D
A	MM	2017		1890	1910		2260	
В	MM	14	1418		2235		28	73
C	MM	12	1220		12	21	12	25
D	MM	48	484		41	18	41	18
Масса стандартного агрегата								
Кондиционер ВАС	КГ	394	414	547	604	619	796	852
Масса агрегата с газовым модулем								
Кондиционер BAG стандартный нагрев	КГ	445	465	608	678	693	904	960
Кондиционер BAG высокий нагрев	КГ	454	474	627	700	715	963	1019

Габаритные размеры монтажных рам


НЕРЕГУЛИРУЕМАЯ МОНТЖНАЯ РАМА (ПОСТАВЛЯЕТСЯ В РАЗОБРАННОМ ВИДЕ)

МОНТАЖНАЯ РАМА, РЕГУЛИРУЕМАЯ ПО УГЛУ НАКЛОНА

МОНТАЖНАЯ РАМА С РАЗДАЧЕЙ ВОЗДУХА ПО НЕСКОЛЬКИМ НАПРАВЛЕНИЯМ

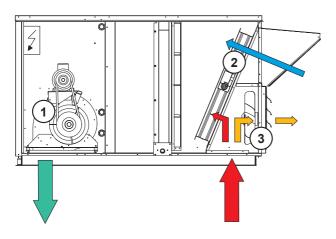


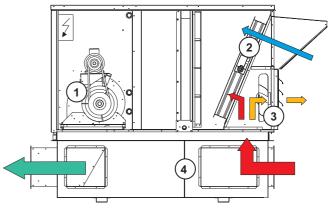
BALTIC™ BAC/BAH/BAG/BAM				30S	35S	45S	55S	65D	75D
Нерегулируемая монтажная	Α	MM	11	83	1380	1630		20	80
рама (поставляется в	В	MM	1893		1740	1740		2090	
разобранном виде)	C	MM	400		400	40	00	40	00
Монтажная рама,	Α	MM	11	86	1383	16	33	20	82
регулируемая по углу	В	MM	18	96	1743	17	43	20	92
наклона	C	MM	40	01	401	40	01	40	01
Монтажная рама с раздачей воздуха по нескольким	Α	MM	12	36	1433	1683		20	180
направлениям (Наружные	В	MM	18	93	1740	17	40	20	90
размеры. Проем в крыше не требуется)	С	MM	68	50	650	68	50	7	50
Moutavyuag pana c	Α	MM	13	90	1587	18	37	22	87
Монтажная рама с	В	MM	21	00	1947	19	47	22	97
вытяжным вентилятором (вертикальная подача)	C	MM	90	00	900	900		1050	
(вертикальная подача)	D	MM	34	14	344	34	14	34	44
Moutavyuag pava c	Α	MM	12	27	1424	16	74	21	24
Монтажная рама с	В	MM	19	42	1789	17	89	21	38
вытяжным вентилятором (горизонтальная подача)	С	мм 740		740	74	40	890		
(горизоптальная подача)	\Box		2	1.1	044	2	1.1	2	1 1

344

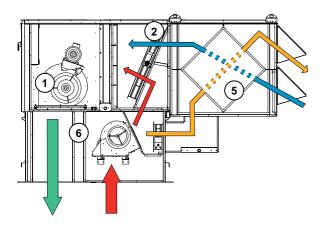
344

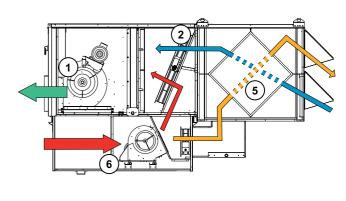
МОНТАЖНАЯ РАМА С ЦЕНТРОБЕЖНЫМ ВЕНТИЛЯТОРОМ (для агрегатов с дополнительным нагревателем)




MM

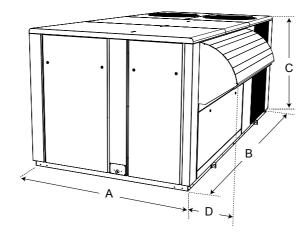
Принципиальная схема


BALTIC™ (вертикальная подача воздуха)


МОНТАЖНАЯ РАМА С РАЗДАЧЕЙ ВОЗДУХА ПО НЕСКОЛЬКИМ НАПРАВЛЕНИЯМ

МОДУЛЬ ТЕПЛОУТИЛИЗАЦИИ + МОНТАЖНАЯ РАМА С ВЫТЯЖНЫМ ВЕНТИЛЯТОРОМ (вертикальная подача) МОДУЛЬ ТЕПЛОУТИЛИЗАЦИИ + МОНТАЖНАЯ РАМА С ВЫТЯЖНЫМ ВЕНТИЛЯТОРОМ (горизонтальная подача)

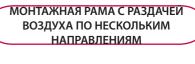
\Rightarrow	Наружный воздух	1	Приточный вентилятор	I 4	Монтажная рама с раздачей воздуха по нескольким направлениям
\rightarrow	Рециркуляционный воздух	2	Клапан экономайзера	5	Модуль теплоутилизации
\Rightarrow	Вытяжной воздух	,	Гравитационный клапан вытяжного воздуха или Гравитационный клапан + вытяжной		Вытяжная монтажная рама
\Rightarrow	Приточный воздух	3	вентилятор	6	рынжная монтажная рама

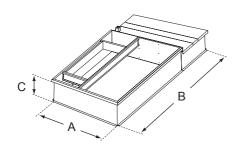

Технические характеристики

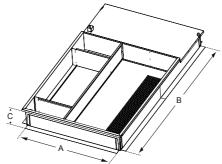
ELEVATA EO EL JEO ED		0.5	4	00	400
FLEXY TM FC/FH/FG/FD Режим охлаждения FCM/FGM		85	1	00	120
РЕЖИМ ОХЛАЖДЕНИЯ ГСИ/ГОМ Холодопроизводительность брутто (темп. наружн. возд. 35 °С, темп. на входе 27°С, отн. влажн. 47%) по Eurovent	кВт	05.0	1	OF.	110
		85,2		05	119
Коэффициент энергоэффективности EER брутто (темп. наружн. возд. 32°С, темп. на входе 26°С, отн. вл.		3,3		,15	3,09
Потребляемая мощность FCM	кВт	29,0	3	8,3	44,5
Режим нагрева FHM/FDM					
Теплопроизводительность нетто (темп. нар. воздуха 7°С, темп. на входе 20°С)	кВт	82,9		03	117
Коэффициент энергоэффективности СОР брутто (темп. нар. воздуха 7°С, темп. на входе		3,49		,51	3,54
Коэффициент энергоэффективности СОР нетто (темп. нар. воздуха 7°С, темп. на входе 20	0°C) FHM	3,16	3	,10	3,10
Дополнительный нагрев					
Теплопроизводительность газового модуля S	кВт	55,2	5:	5,2	55,2
Теплопроизводительность газового модуля Н	кВт	110,4	11	0,4	110,4
Теплопроизводительность электрического нагревателя S	кВт	30	3	30	30
Теплопроизводительность электрического нагревателя М	кВт	54		54	54
Теплопроизводительность электрического нагревателя Н	кВт	72	7	72	72
Производительность водяного воздухонагревателя S (20°C на входе / вода 90-70°C)	кВт	112	1	24	130
Производительность водяного воздухонагревателя H (20°C на входе / вода 90-70°C)	кВт	175	1	97	209
Холодильный контур			<u>'</u>		
Кол-во контуров / Кол-во компрессоров в контуре			2	/ 1	
Масса хладагента в контуре	КГ	10,5 + 10,5		+ 10,6	10,6 + 10,6
Макс. темп. нар. воздуха при темп. воздуха в помещении 27°С по сух. термометру и 19°С по влажн. термометру	°C	46		14	44
Вентиляция					
Номинальный расход воздуха	M ³ /4	15000	18	500	20500
Минимальный расход воздуха	м³/ч	12000		000	15000
Максимальный расход воздуха	M ³ /4	23000		000	23000
Акустические характеристики	101 / -1	23000		000	23000
Уровень звуковой мощности (стандартный агрегат)	dB(A)	87		38	87
Уровень звуковой мощности (стандартный агрегат) Уровень звуковой мощности (низкошумный агрегат)	dB(A)				
		82		32	82
Уровень звуковой мощности (приток) ⁽¹⁾	dB(A)	85		90	89
FLEXY™ FC/FH/FG/FD		150	170	200	230
Режим охлаждения FCM/FGM/FHM/FDM	, , ,				
Холодопроизводительность брутто (темп. наружн. возд. 35 °C, темп. на входе 27°C, отн. влажн. 47%) по Eurovent	кВт	148	170	197	234
Коэффициент энергоэффективности EER брутто (темп. наружн. возд. 32°C, темп. на входе 26°C, отн. вл.	ажн. 60%)	3,22	2,99	3,46	0.05
Потребляемая мощность FCM	1				3,05
	кВт	52,4	65,9	65,9	88,1
Режим нагрева FHM/FDM	кВт	52,4	65,9	65,9	· · · ·
· · · · · · · · · · · · · · · · · · ·	кВт	142	65,9	65,9	· · · ·
Теплопроизводительность нетто (темп. нар. воздуха 7°С, темп. на входе 20°С)	кВт	,	,		88,1
Теплопроизводительность нетто (темп. нар. воздуха 7°С, темп. на входе 20°С) Коэффициент энергоэффективности СОР брутто (темп. нар. воздуха 7°С, темп. на входе 2	кВт 20°С) FHM	142	168	188	88,1
Режим нагрева FHM/FDM Теплопроизводительность нетто (темп. нар. воздуха 7°С, темп. на входе 20°С) Коэффициент энергоэффективности СОР брутто (темп. нар. воздуха 7°С, темп. на входе 20 Коэффициент энергоэффективности СОР нетто (темп. нар. воздуха 7°С, темп. на входе 20 Дополнительный нагрев	кВт 20°С) FHM	142 3,47	168 3,4	188 3,69	226 3,45
Теплопроизводительность нетто (темп. нар. воздуха 7°С, темп. на входе 20°С) Коэффициент энергоэффективности СОР брутто (темп. нар. воздуха 7°С, темп. на входе 2 Коэффициент энергоэффективности СОР нетто (темп. нар. воздуха 7°С, темп. на входе 20 Дополнительный нагрев	кВт 20°С) FHM	142 3,47	168 3,4	188 3,69	226 3,45
Теплопроизводительность нетто (темп. нар. воздуха 7°С, темп. на входе 20°С) Коэффициент энергоэффективности СОР брутто (темп. нар. воздуха 7°С, темп. на входе 20 Коэффициент энергоэффективности СОР нетто (темп. нар. воздуха 7°С, темп. на входе 20 Дополнительный нагрев Теплопроизводительность газового модуля S	KBT 20°C) FHM 0°C) FHM	142 3,47 3,10	168 3,4 2,98	188 3,69 3,24	226 3,45 3,04
Теплопроизводительность нетто (темп. нар. воздуха 7°С, темп. на входе 20°С) Коэффициент энергоэффективности СОР брутто (темп. нар. воздуха 7°С, темп. на входе 20 Коэффициент энергоэффективности СОР нетто (темп. нар. воздуха 7°С, темп. на входе 20 Дополнительный нагрев Теплопроизводительность газового модуля S Теплопроизводительность газового модуля Н	KBT 20°C) FHM 0°C) FHM	142 3,47 3,10 110,4 165,6	168 3,4 2,98 110,4 165,6	188 3,69 3,24	226 3,45 3,04
Теплопроизводительность нетто (темп. нар. воздуха 7°С, темп. на входе 20°С) Коэффициент энергоэффективности СОР брутто (темп. нар. воздуха 7°С, темп. на входе 20°С) Коэффициент энергоэффективности СОР нетто (темп. нар. воздуха 7°С, темп. на входе 20°С) Дополнительный нагрев Теплопроизводительность газового модуля S Теплопроизводительность газового модуля Н Теплопроизводительность электрического нагревателя S	KBT 20°C) FHM 0°C) FHM KBT KBT	142 3,47 3,10	168 3,4 2,98	188 3,69 3,24 165,6 220,8 72	226 3,45 3,04 165,6 220,8
Теплопроизводительность нетто (темп. нар. воздуха 7°С, темп. на входе 20°С) Коэффициент энергоэффективности СОР брутто (темп. нар. воздуха 7°С, темп. на входе 20°С) Коэффициент энергоэффективности СОР нетто (темп. нар. воздуха 7°С, темп. на входе 20°С) Дополнительный нагрев Теплопроизводительность газового модуля S Теплопроизводительность газового модуля Н Теплопроизводительность электрического нагревателя S Теплопроизводительность электрического нагревателя М	KBT 20°C) FHM 0°C) FHM KBT KBT KBT KBT KBT	142 3,47 3,10 110,4 165,6 45 72	168 3,4 2,98 110,4 165,6 45 72	188 3,69 3,24 165,6 220,8 72 108	226 3,45 3,04 165,6 220,8 72 108
Теплопроизводительность нетто (темп. нар. воздуха 7°С, темп. на входе 20°С) Коэффициент энергоэффективности СОР брутто (темп. нар. воздуха 7°С, темп. на входе 20°С) Коэффициент энергоэффективности СОР нетто (темп. нар. воздуха 7°С, темп. на входе 20°С) Дополнительный нагрев Теплопроизводительность газового модуля S Теплопроизводительность газового модуля Н Теплопроизводительность электрического нагревателя S Теплопроизводительность электрического нагревателя М Теплопроизводительность электрического нагревателя Н	кВт 20°С) FHM 0°С) FHM кВт кВт кВт кВт	142 3,47 3,10 110,4 165,6 45 72 108	168 3,4 2,98 110,4 165,6 45 72 108	188 3,69 3,24 165,6 220,8 72 108 162	226 3,45 3,04 165,6 220,8 72 108 162
Теплопроизводительность нетто (темп. нар. воздуха 7°С, темп. на входе 20°С) Коэффициент энергоэффективности СОР брутто (темп. нар. воздуха 7°С, темп. на входе 20°С) Коэффициент энергоэффективности СОР нетто (темп. нар. воздуха 7°С, темп. на входе 20°С) Дополнительный нагрев Теплопроизводительность газового модуля S Теплопроизводительность газового модуля Н Теплопроизводительность электрического нагревателя S Теплопроизводительность электрического нагревателя М Теплопроизводительность электрического нагревателя Н Производительность водяного воздухонагревателя S (20°С на входе / вода 90-70°С)	кВт 20°С) FHM 0°С) FHM кВт кВт кВт кВт кВт кВт	142 3,47 3,10 110,4 165,6 45 72 108 140	168 3,4 2,98 110,4 165,6 45 72 108 149	188 3,69 3,24 165,6 220,8 72 108 162 177	226 3,45 3,04 165,6 220,8 72 108 162 199
Теплопроизводительность нетто (темп. нар. воздуха 7°С, темп. на входе 20°С) Коэффициент энергоэффективности СОР брутто (темп. нар. воздуха 7°С, темп. на входе 20°С) Коэффициент энергоэффективности СОР нетто (темп. нар. воздуха 7°С, темп. на входе 20 Дополнительный нагрев Теплопроизводительность газового модуля S Теплопроизводительность газового модуля Н Теплопроизводительность электрического нагревателя S Теплопроизводительность электрического нагревателя М Теплопроизводительность электрического нагревателя Н Производительность водяного воздухонагревателя S (20°С на входе / вода 90-70°С) Производительность водяного воздухонагревателя Н (20°С на входе / вода 90-70°С)	кВт 20°С) FHM 0°С) FHM кВт кВт кВт кВт	142 3,47 3,10 110,4 165,6 45 72 108	168 3,4 2,98 110,4 165,6 45 72 108	188 3,69 3,24 165,6 220,8 72 108 162	226 3,45 3,04 165,6 220,8 72 108 162
Теплопроизводительность нетто (темп. нар. воздуха 7°С, темп. на входе 20°С) Коэффициент энергоэффективности СОР брутто (темп. нар. воздуха 7°С, темп. на входе 20°С) Коэффициент энергоэффективности СОР нетто (темп. нар. воздуха 7°С, темп. на входе 20°С) Дополнительный нагрев Теплопроизводительность газового модуля S Теплопроизводительность газового модуля Н Теплопроизводительность электрического нагревателя S Теплопроизводительность электрического нагревателя М Теплопроизводительность электрического нагревателя Н Производительность водяного воздухонагревателя S (20°С на входе / вода 90-70°С) Производительность водяного воздухонагревателя Н (20°С на входе / вода 90-70°С) Холодильный контур	кВт 20°С) FHM 0°С) FHM кВт кВт кВт кВт кВт кВт	142 3,47 3,10 110,4 165,6 45 72 108 140 251	168 3,4 2,98 110,4 165,6 45 72 108 149	188 3,69 3,24 165,6 220,8 72 108 162 177 296	226 3,45 3,04 165,6 220,8 72 108 162 199
Теплопроизводительность нетто (темп. нар. воздуха 7°С, темп. на входе 20°С) Коэффициент энергоэффективности СОР брутто (темп. нар. воздуха 7°С, темп. на входе 20°С) Коэффициент энергоэффективности СОР нетто (темп. нар. воздуха 7°С, темп. на входе 20°С) Дополнительный нагрев Теплопроизводительность газового модуля S Теплопроизводительность газового модуля Н Теплопроизводительность электрического нагревателя S Теплопроизводительность электрического нагревателя М Теплопроизводительность электрического нагревателя Н Производительность водяного воздухонагревателя S (20°С на входе / вода 90-70°С) Производительность водяного воздухонагревателя Н (20°С на входе / вода 90-70°С) Холодильный контур Кол-во контуров /Кол-во компрессоров в контуре	KBT 20°C) FHM CO°C) FHM KBT KBT KBT KBT KBT KBT KBT KB	142 3,47 3,10 110,4 165,6 45 72 108 140 251	168 3,4 2,98 110,4 165,6 45 72 108 149 272	188 3,69 3,24 165,6 220,8 72 108 162 177 296	226 3,45 3,04 165,6 220,8 72 108 162 199 313
Теплопроизводительность нетто (темп. нар. воздуха 7°С, темп. на входе 20°С) Коэффициент энергоэффективности СОР брутто (темп. нар. воздуха 7°С, темп. на входе 20°С) Коэффициент энергоэффективности СОР нетто (темп. нар. воздуха 7°С, темп. на входе 20°С) Дополнительный нагрев Теплопроизводительность газового модуля S Теплопроизводительность газового модуля Н Теплопроизводительность электрического нагревателя S Теплопроизводительность электрического нагревателя М Теплопроизводительность электрического нагревателя Н Производительность электрического нагревателя Н Производительность водяного воздухонагревателя S (20°С на входе / вода 90-70°С) Производительность водяного воздухонагревателя Н (20°С на входе / вода 90-70°С) Холодильный контур Кол-во контуров /Кол-во компрессоров в контуре	KBT 20°C) FHM CO°C) FHM KBT KBT KBT KBT KBT KBT KBT KB	142 3,47 3,10 110,4 165,6 45 72 108 140 251 2/1&2 15,8+16	168 3,4 2,98 110,4 165,6 45 72 108 149 272	188 3,69 3,24 165,6 220,8 72 108 162 177 296	226 3,45 3,04 165,6 220,8 72 108 162 199 313
Теплопроизводительность нетто (темп. нар. воздуха 7°С, темп. на входе 20°С) Коэффициент энергоэффективности СОР брутто (темп. нар. воздуха 7°С, темп. на входе 2 Коэффициент энергоэффективности СОР нетто (темп. нар. воздуха 7°С, темп. на входе 2 Дополнительный нагрев Теплопроизводительность газового модуля S Теплопроизводительность газового модуля Н Теплопроизводительность электрического нагревателя S Теплопроизводительность электрического нагревателя М Теплопроизводительность электрического нагревателя Н Производительность воздухонагревателя S (20°С на входе / вода 90-70°С) Производительность воздухонагревателя Н (20°С на входе / вода 90-70°С) Холодильный контур Кол-во контуров /Кол-во компрессоров в контуре Масса хладагента в контуре	KBT 20°C) FHM CO°C) FHM KBT KBT KBT KBT KBT KBT KBT KB	142 3,47 3,10 110,4 165,6 45 72 108 140 251	168 3,4 2,98 110,4 165,6 45 72 108 149 272	188 3,69 3,24 165,6 220,8 72 108 162 177 296	226 3,45 3,04 165,6 220,8 72 108 162 199 313
Теплопроизводительность нетто (темп. нар. воздуха 7°С, темп. на входе 20°С) Коэффициент энергоэффективности СОР брутто (темп. нар. воздуха 7°С, темп. на входе 2 Коэффициент энергоэффективности СОР нетто (темп. нар. воздуха 7°С, темп. на входе 2 Дополнительный нагрев Теплопроизводительность газового модуля S Теплопроизводительность газового модуля Н Теплопроизводительность электрического нагревателя S Теплопроизводительность электрического нагревателя М Теплопроизводительность электрического нагревателя Н Производительность воздухонагревателя S (20°С на входе / вода 90-70°С) Производительность воздухонагревателя Н (20°С на входе / вода 90-70°С) Холодильный контур Кол-во контуров /Кол-во компрессоров в контуре Масса хладагента в контуре Макс. темп. нар. воздуха при темп. воздуха в помещении 27°С по сух. термометру и 19°С по влажн. термометру Вентиляция	кВт 20°С) FHM 0°С) FHM кВт кВт кВт кВт кВт кВт	142 3,47 3,10 110,4 165,6 45 72 108 140 251 2/1 & 2 15,8 + 16 44	168 3,4 2,98 110,4 165,6 45 72 108 149 272	188 3,69 3,24 165,6 220,8 72 108 162 177 296 2 / 2 2 2 + 22 46	226 3,45 3,04 165,6 220,8 72 108 162 199 313
Теплопроизводительность нетто (темп. нар. воздуха 7°С, темп. на входе 20°С) Коэффициент энергоэффективности СОР брутто (темп. нар. воздуха 7°С, темп. на входе 20°С) Коэффициент энергоэффективности СОР нетто (темп. нар. воздуха 7°С, темп. на входе 20°С) Дополнительный нагрев Теплопроизводительность газового модуля S Теплопроизводительность газового модуля H Теплопроизводительность электрического нагревателя S Теплопроизводительность электрического нагревателя М Теплопроизводительность электрического нагревателя H Производительность водяного воздухонагревателя S (20°С на входе / вода 90-70°С) Производительность водяного воздухонагревателя H (20°С на входе / вода 90-70°С) Холодильный контур Кол-во контуров /Кол-во компрессоров в контуре Масса хладагента в контуре Масса хладагента в контуре Макс. темп. нар. воздуха при темп. воздуха в помещении 27°С по сух. термометру и 19°С по влажн. термометру Вентиляция Номинальный расходвоздуха	кВт 20°С) FHM 00°С) FHM кВт	142 3,47 3,10 110,4 165,6 45 72 108 140 251 2/1 & 2 15,8 + 16 44	168 3,4 2,98 110,4 165,6 45 72 108 149 272 16 + 16 46	188 3,69 3,24 165,6 220,8 72 108 162 177 296 2/2 22 + 22 46 35000	226 3,45 3,04 165,6 220,8 72 108 162 199 313
Теплопроизводительность нетто (темп. нар. воздуха 7°С, темп. на входе 20°С) Коэффициент энергоэффективности СОР брутто (темп. нар. воздуха 7°С, темп. на входе 20°С) Коэффициент энергоэффективности СОР нетто (темп. нар. воздуха 7°С, темп. на входе 20°С) Дополнительный нагрев Теплопроизводительность газового модуля S Теплопроизводительность газового модуля H Теплопроизводительность электрического нагревателя S Теплопроизводительность электрического нагревателя М Теплопроизводительность электрического нагревателя Н Производительность воздухонагревателя S (20°С на входе / вода 90-70°С) Производительность водяного воздухонагревателя Н (20°С на входе / вода 90-70°С) Холодильный контур Кол-во контуров /Кол-во компрессоров в контуре Масса хладагента в контуре Макс. темп. нар. воздуха при темп. воздуха в помещении 27°С по сух. термометру и 19°С по влажн. термометру Вентиляция Номинальный расходвоздуха Минимальный расход воздуха	кВт 20°С) FHM 0°С) FHM кВт кВт кВт кВт кВт кВт кВт кВт	142 3,47 3,10 110,4 165,6 45 72 108 140 251 2/1 & 2 15,8 + 16 44 26000 18000	168 3,4 2,98 110,4 165,6 45 72 108 149 272 16 + 16 46 30000 21000	188 3,69 3,24 165,6 220,8 72 108 162 177 296 2 / 2 22 + 22 46 35000 24000	226 3,45 3,04 165,6 220,8 72 108 162 199 313 23,5 + 23 44 39000 27000
Теплопроизводительность нетто (темп. нар. воздуха 7°С, темп. на входе 20°С) Коэффициент энергоэффективности СОР брутто (темп. нар. воздуха 7°С, темп. на входе 2 Коэффициент энергоэффективности СОР нетто (темп. нар. воздуха 7°С, темп. на входе 2 Дополнительный нагрев Теплопроизводительность газового модуля S Теплопроизводительность газового модуля Н Теплопроизводительность электрического нагревателя S Теплопроизводительность электрического нагревателя М Теплопроизводительность электрического нагревателя Н Производительность воздухонагревателя S (20°С на входе / вода 90-70°С) Производительность водяного воздухонагревателя Н (20°С на входе / вода 90-70°С) Холодильный контур Кол-во контуров /Кол-во компрессоров в контуре Масса хладагента в контуре Макс. темп. нар. воздуха при темп. воздуха в помещении 27°С по сух. термометру и 19°С по влажн. термометру Вентиляция Номинальный расход воздуха Минимальный расход воздуха Максимальный расход воздуха	кВт 20°С) FHM 00°С) FHM мВт кВт кВт кВт кВт кВт кВт кВт кВт кВт к	142 3,47 3,10 110,4 165,6 45 72 108 140 251 2/1 & 2 15,8 + 16 44	168 3,4 2,98 110,4 165,6 45 72 108 149 272 16 + 16 46	188 3,69 3,24 165,6 220,8 72 108 162 177 296 2/2 22 + 22 46 35000	226 3,45 3,04 165,6 220,8 72 108 162 199 313
Теплопроизводительность нетто (темп. нар. воздуха 7°С, темп. на входе 20°С) Коэффициент энергоэффективности СОР брутто (темп. нар. воздуха 7°С, темп. на входе 20°С) Коэффициент энергоэффективности СОР нетто (темп. нар. воздуха 7°С, темп. на входе 20°С) Дополнительный нагрев Теплопроизводительность газового модуля S Теплопроизводительность газового модуля Н Теплопроизводительность электрического нагревателя S Теплопроизводительность электрического нагревателя М Теплопроизводительность электрического нагревателя Н Производительность воздухонагревателя S (20°С на входе / вода 90-70°С) Производительность водяного воздухонагревателя Н (20°С на входе / вода 90-70°С) Холодильный контур Кол-во контуров /Кол-во компрессоров в контуре Масса хладагента в контуре Масса хладагента в контуре Макс. темп. нар. воздуха при темп. воздуха в помещении 27°С по сух термометру и 19°С по влажн. термометру Вентиляция Номинальный расход воздуха Минимальный расход воздуха Максимальный расход воздуха Акустические характеристики	кВт 20°С) FHM 0°С) FHM кВт	142 3,47 3,10 110,4 165,6 45 72 108 140 251 2/1 & 2 15,8 + 16 44 26000 18000	168 3,4 2,98 110,4 165,6 45 72 108 149 272 16+16 46 30000 21000 35000	188 3,69 3,24 165,6 220,8 72 108 162 177 296 2 / 2 22 + 22 46 35000 24000	226 3,45 3,04 165,6 220,8 72 108 162 199 313 23,5 + 23 44 39000 27000
Теплопроизводительность нетто (темп. нар. воздуха 7°С, темп. на входе 20°С) Коэффициент энергоэффективности СОР брутто (темп. нар. воздуха 7°С, темп. на входе 20°С) Коэффициент энергоэффективности СОР нетто (темп. нар. воздуха 7°С, темп. на входе 20°С) Дополнительный нагрев Теплопроизводительность газового модуля S Теплопроизводительность газового модуля Н Теплопроизводительность электрического нагревателя S Теплопроизводительность электрического нагревателя М Теплопроизводительность электрического нагревателя Н Производительность водяного воздухонагревателя S (20°С на входе / вода 90-70°С) Производительность водяного воздухонагревателя Н (20°С на входе / вода 90-70°С) Холодильный контур Кол-во контуров /Кол-во компрессоров в контуре Масса хладагента в контуре Макс. темп. нар. воздуха при темп. воздуха в помещении 27°С по сух. термометру и 19°С по влажн. термометру Вентиляция Номинальный расход воздуха Минимальный расход воздуха Максимальный расход воздуха Акустические характеристики Уровень звуковой мощности (стандартный агрегат)	кВт 20°С) FHM 0°С) FHM кВт кВт кВт кВт кВт кВт кВт кВт	142 3,47 3,10 110,4 165,6 45 72 108 140 251 2/1 & 2 15,8 + 16 44 26000 18000	168 3,4 2,98 110,4 165,6 45 72 108 149 272 16 + 16 46 30000 21000	188 3,69 3,24 165,6 220,8 72 108 162 177 296 2 / 2 22 + 22 46 35000 24000	226 3,45 3,04 165,6 220,8 72 108 162 199 313 23,5 + 23 44 39000 27000
Теплопроизводительность нетто (темп. нар. воздуха 7°С, темп. на входе 20°С) Коэффициент энергоэффективности СОР брутто (темп. нар. воздуха 7°С, темп. на входе 20°С) Коэффициент энергоэффективности СОР нетто (темп. нар. воздуха 7°С, темп. на входе 20°С) Дополнительный нагрев Теплопроизводительность газового модуля S Теплопроизводительность газового модуля Н Теплопроизводительность электрического нагревателя S Теплопроизводительность электрического нагревателя М Теплопроизводительность электрического нагревателя Н Производительность воздухонагревателя S (20°С на входе / вода 90-70°С) Производительность водяного воздухонагревателя Н (20°С на входе / вода 90-70°С) Холодильный контур Кол-во контуров /Кол-во компрессоров в контуре Масса хладагента в контуре Масса хладагента в контуре Макс. темп. нар. воздуха при темп. воздуха в помещении 27°С по сух термометру и 19°С по влажн. термометру Вентиляция Номинальный расход воздуха Минимальный расход воздуха Максимальный расход воздуха Акустические характеристики	кВт 20°С) FHM 0°С) FHM кВт	142 3,47 3,10 110,4 165,6 45 72 108 140 251 2/1 & 2 15,8 + 16 44 26000 18000 35000	168 3,4 2,98 110,4 165,6 45 72 108 149 272 16+16 46 30000 21000 35000	188 3,69 3,24 165,6 220,8 72 108 162 177 296 2 / 2 22 + 22 46 35000 24000 43000	226 3,45 3,04 165,6 220,8 72 108 162 199 313 23,5 + 23 44 39000 27000 43000

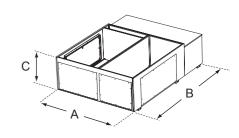
^(*) S - стандартный нагрев, M - средний нагрев, H - высокий нагрев Eurovent (www.eurovent-certification.com) **Крышные кондиционеры** FLEXY™ II мощностью до 85 кВт участвуют в программе RT сертификации

Габаритные размеры и масса

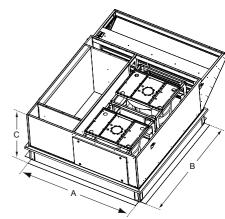


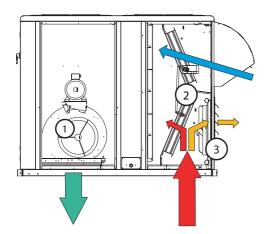

FLEXY TM FC/F	H/FG/FD	85	100	120	150	170	200	230	
A	MM		2200		22	.00	2200		
В	MM		3350		43	80	55	33	
C	MM		1510		18	34	21	34	
D	MM		360		45	50	6-	15	
Масса стандартного агрегата									
Кондиционер FCM	КГ	934	1009	1085	1367	1430	1650	1950	
Масса агрегата с газовым модулем				,					
Кондиционер FGM стандартный нагрев	КГ	1041	1116	1192	1608	1671	1914	2214	
Кондиционер FGM высокий нагрев	КГ	1111	1186	1262	1631	1694	1954	2254	

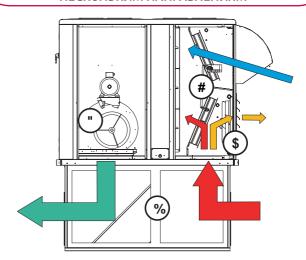

Габаритные размеры монтажных рам


НЕРЕГУЛИРЕМАЯ РАМА

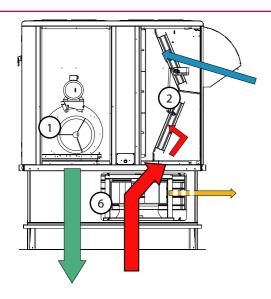
МОНТАЖНАЯ РАМА, РЕГУЛИРУЕМАЯ ПО УГЛУ НАКЛОНА

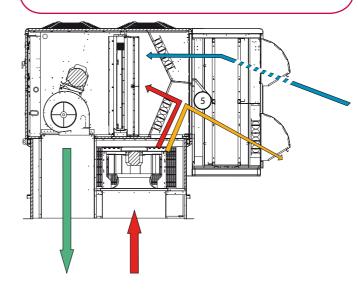



XY™ II FC/FH/FG/FD			85	100	120	150	170	200	230	ВЫТЯЖНАЯ МОНТАЖНАЯ РАМА
егулируемая монтажная	Α	MM		2056		20	56	20	56	



Принципиальные схемы


FLEXY™ II (вертикальная подача воздуха)


МОНТАЖНАЯ РАМА С РАЗДАЧЕЙ ВОЗДУХА ПО НЕСКОЛЬКИМ НАПРАВЛЕНИЯМ

ВЫТЯЖНАЯ МОНТАЖНАЯ РАМА (вертикальная подача воздуха)

МОДУЛЬ ТЕПЛОУТИЛИЗАЦИИ

\Rightarrow	Наружный воздух
→	Рециркуляционный воздух
\Rightarrow	Вытяжной воздух
\Rightarrow	Приточный воздух
1	Приточный вентилятор
2	Рециркуляционный клапан
3	Гравитационный клапан вытяжного воздуха
4	Монтажная рама с раздачей воздуха по нескольким направлениям
5	Теплообменник теплоутилизатора
6	Рециркуляционный / Вытяжной вентилятор

КРЫШНЫЕ КОНДИЦИОНЕРЫ ВОЗДУШНОЕ ОХЛАЖДЕНИЕ

Дополнительные функции и принадлежности

Дополнительный нагрев

- Электрический воздухонагреватель: Стандартный, средний и высокий нагрев. Средний и высокий нагрев плавно регулируется симисторным регулятором.
- Водяной воздухонагреватель: Поставляются 1- и 2-рядные водяные воздухонагреватели с плавным регулированием производительности с помощью 3-ходового вентиля. Защита от замораживания осуществляется при помощи вентиля управляемого термостатом.
- Высокоэффективный газовый воздухонагреватель с КПД 92%: Высокоэффективный газовый воздухонагреватель может иметь ступенчатое (2-4 ступени) или плавное (20-100%) регулирование мощности.

Встраивание в архитектурные конструкции

- Нерегулируемая монтажная рама: Для удобства транспортировки рама поставляется в разобранном виде. Рама легко собирается при монтаже
- Монтажная рама, регулируемая по высоте наклона: Регулирование угла наклона рамы до 4-5 % осуществляется во всех направлениях.
- Монтажная рама с раздачей воздуха по нескольким направлениям: Обеспечивает различные варианты воздушных потоков, в том числе горизонтальные забор и подача воздуха с одной стороны.
- Различные конфигурации воздушных потоков: Горизонтальная и вертикальная вниз являются стандартными опциями для всех крышных кондиционеров Lennox. Вертикальная вверх возможна только для серии
- Специальная монтажная рама: Данная рама используется при замене старого агрегата на новый крышный кондиционер Lennox.
- Особый цвет окраски: Агрегаты могут поставляться окрашенными в различные цвета.

🐠 Высокое качество воздуха в помещении

- Управление подмешиванием наружного воздуха: Экономайзер позволяет обеспечить подмешивание необходимого количества наружного воздуха для соответствия требованиям качества воздуха в помещении.
- Датчик качества воздуха в помещении: Информирует о качестве воздуха в помещении, позволяет автоматически регулировать минимальный приток наружного воздуха в зависимости от количества людей в помещении. Измеряет уровень СО, в воздухе помещения и регулирует подачу наружного воздуха.
- Гравитационный клапан вытяжного воздуха: Гравитационный клапан вытяжного воздуха снижает давление в здании при поступлении наружного
- Осевой вытяжной вентилятор: Обеспечивает снижение избыточного давления воздуха при подаче большого количества наружного воздуха.
- Вытяжная монтажная рама с радиальным вентилятором и воздушным клапаном: Если необходимо точно поддерживать баланс воздуха в помещении. Радиальный вентилятор позволяет выбрасывать количество воздуха меньшее или равное номинальному расходу агрегата при статическом давлении до 300 Па и снизить затраты на электроэнергию и обслуживание.
- Комплект качества воздуха в помещении (IAQ) с бактерицидной лампой (только Flexy II): Ультрафиолет уничтожает микроорганизмы, поддерживая чистоту испарителя и постоянное падение давления на нем, что позволяет снизить энергопотребление и улучшить качество воздуха, подаваемого в помещение.
- Моющиеся воздушные фильтры класса G4 со сменным фильтрующим материалом: Позволяет заменять только загрязнившийся фильтрующий материал вместо замены всего фильтра с рамкой. Это хорошее решение для снижения эксплуатационных затрат.
- Воздушные фильтры класса EU4/F7: Комплект из двух фильтров толшиной 50 мм. Наличие фильтра класса G4 перед фильтром класса F7 снижает вероятность преждевременного загрязнения фильтра класса
- Панели с двойными стенками: Данное исполнение позволяет предотвратить появление бактерий на пористых поверхностях и значительно упрощает чистку панелей.
- Аналоговый датчик загрязнения фильтра: Дифференциальный датчик давления измеряет перепад давления на фильтре и теплообменнике и предупреждает о необходимости замены фильтра, что позволяет снизить энергопотребление и улучшить качество воздуха.

Безопасность

- Переходная рама: Используется для соответствия французским нормам СН40 (Общественные здания), которые запрещают во Франции устанавливать крышные кондиционеры непосредственно на монтажную
- Датчик дыма: Ионная головка датчика реагирует на любой тип дыма. При появлении дыма агрегат останавливается, клапан рециркуляционного воздуха полностью закрывается, а клапан наружного воздуха полностью открывается.
- Противопожарный термостат: Данный защитный термостат обеспечивает защиту от пожара посредством выключения агрегата и закрытия клапана наружного воздуха.

Энергоэффективность и дополнительный комфорт

- Модуль теплоутилизации: Позволяет утилизировать теплоту вытяжного воздуха для нагрева или охлаждения наружного воздуха и экономить энергию.
- Высокоэффективный приточный вентилятор с переменным расходом воздуха: Данный вентилятор значительно уменьшает потребление электроэнергии крышным кондиционером благодаря электронно-коммутируемому электродвигателю и интеллектуальному непосредственному приводу. Контроллер CLIMATIC™ 50 регулирует расход приточного воздуха в зависимости от мощности охлаждения или нагрева и обеспечивает требуемое количество наружного воздуха.
- Плавный пуск приточного вентилятора: При пуске агрегата расход воздуха увеличивается постепенно.
- Газовый воздухонагреватель с плавным регулированием мощности: Горелка поддерживает постоянное соотношение смеси газ/воздух и оптимальную эффективность при любой тепловой мошности.
- Естественное охлаждение: Использование экономайзера (секция смешивания) является наиболее эффективным способом уменьшить эксплуатационные расходы при помощи естественного охлаждения, когда это возможно.
- Точное количество наружного воздуха: Контроллер СLIMATIС™ 50 периодически калибрует открытие клапана наружного воздуха для гарантированной подачи требуемого количества наружного воздуха. Данная функция обеспечивает лучший контроль содержания СО, и экономию энергоресурсов благодаря снижению мощности требуемой на охлаждение или нагрев дополнительного наружного воздуха.
- Динамическое оттаивание: Данная функция позволяет значительно уменьшить потребление энергии благодаря снижению количества циклов оттаивания. Контроллер CLIMATIC™ 50 определяет замораживание теплообменников и включает цикл оттаивания, только когда это действительно необходимо
- Попеременное оттаивание: Стандартная функция для двухконтурных агрегатов, позволяет экономить энергию посредством сокращения применения дополнительного нагрева во время цикла оттаивания. Если в одном контуре включился режим оттаивания, второй контур продолжает работать в режиме нагрева для поддержания температуры приточного возлуха.
- Низкошумное исполнение: Для достижения низкого уровня шума применяется более низкошумный вентилятор конденсатора и звукоизоляция компрессоров. Для агрегатов FLEXY™ II производится акустическая изоляция компрессорной секции.

Описание контроллера CLIMATIC™ 50

Крышные кондиционеры компании Lennox оснащаются микропроцессорными контроллерами CLIMATIC™ 50 нового поколения. Контроллеры CLIMATIС™ 50 имеют инновационное ПИД регулирование, которое гарантирует более высокую точность контроля температуры и экономию энергии. А также выравнивание времени наработки

Контроллер имеет защитные алгоритмы, генерирующие аварийные сигналы, и сохраняет в памяти последние 32 аварийных сигнала. Контроллер также имеет расширенные функции работы по расписанию с возможностью задавать различные уставки для каждого из 4 временных периодов. Контроллер имеет различные удобные для пользователя пульты управления, сетевые интерфейсы для систем диспетчеризации, а также возможность управлять несколькими агрегатами на одном объекте.

Основные стандартные функции контроллера CLIMATIC™ 50

- Приоритет включения нагревателей: Позволяет пользователю выбирать последовательность включения нагревателей.
- Автоматический переход на летнее/зимнее время: Контроллер СLIMATIC™ 50 выполняет автоматический перевод часов на летнее/зимнее время.
- Функция снижения шума: Ночью, когда необходима меньшая производительность и требуется более низкий уровень шума, контроллер снижает производительность крышного кондиционера для ограничения уровня шума.
- Последовательное включение: После возобновления подачи электропитания все агрегаты не включаются одновременно.
- Конфигурируемые контакты (2 релейных входа): Контроллер CLIMATIC™ 50 имеет 2 релейных входа, а также релейный выход для сигнала общей аварии.

Дополнительные возможности контроллера CLIMATIC™ 50

- Расширенные функции управления: Благодаря специальному алгоритму контроллера Climatic™ 50 и датчикам, возможны две расширенные функции управления: Управление экономайзером по энтальпии и контроль влажности.
- DS 50 Сервисный пульт технического обслуживания: Пульт технического обслуживания является устройством "подключи и работай".
 С пульта можно настроить до 207 параметров, просмотреть до 188 переменных и до 45 аварийных кодов, а также просмотреть журнал аварий, в котором регистрируются последние 32 аварийных сигнала.
- DC50 Программируемый пульт управления:Удобный в эксплуатации пульт дистанционного управления. Прекрасно вписывается в интерьер любого помещения. С пульта DC50 можно изменить настройки таймера, уставки температуры и процентный расход наружного воздуха для каждого периода времени.
- DM 50 Сетевой программируемый пульт управления: Предоставляет такие же возможности, что и пульт DC50, но позволяет управлять до 12 агрегатами, объединенными в сеть.
- Плата термостата ТСВ: Обеспечивает дополнительные цифровые входы для управления агрегатом. Контроллер CLIMATIC™ 50 продолжает управлять устройствами и функциями безопасности, оттайкой и естественным охлаждением.

Сетевые функции контроллера CLIMATIC™ 50

- Сетевой интерфейс Modbus: Интерфейс Modbus применяется для подключения агрегатов к системе управления инженерным оборудованием здания (BMS). Никакие дополнительные платы не требуются. Одна плата применяется для подключения одного крышного агрегата.
- Сетевой интерфейс Lontalk: Интерфейс LonTalk® применяется для подключения агрегатов к системе управления инженерным оборудованием здания (BMS). Никакие дополнительные платы не требуются. Одна плата применяется для подключения одного крышного агрегата.
- **Сетевой интерфейс Bacnet:** Интерфейс Bacnet® применяется для подключения агрегатов к системе управления инженерным оборудованием здания (BMS).
- Система дистанционного мониторинга ADALINK™: ADALINK™ разработка компании LENNOX для мониторинга и управления оборудованием кондиционирования и вентиляции. Максимальное количество 32 агрегата на одном объекте. Система отображает карту объекта с установленными агрегатами, для каждого агрегата показан режим работы. По щелчку на рисунке агрегата пользователь переходит к просмотру параметров работы данного агрегата, журнала аварий и графиков, а также изменению уставок и временных периодов. Вся информация представлена в красивом графическом виде. Adalink может управляться местно через локальную компьютерную сеть или дистанционно при помощи модема.

Крышные кондиционеры Водяное охлаждение

Baltic[™] • 47 → 85 κBτ Flexy[™] • 95 → 196 κBτ

Основные применения

- Большие коммерческие здания (супермаркеты, аэропорты, торговые центры)
- Театры и кинотеатры

- Преимущества оборудования
 Одно из наиболее энергоэффективных решений
- Выгодное моноблочное решение для быстрого и простого
- Различные варианты дополнительного нагрева
- Управление подмешиванием свежего воздуха и естественное охлаждение
- Большой выбор сетевых интерфейсов

Общая информация

Тепловые насосы с водяным конденсатором представляют независимые моноблочные агрегаты, которые переносят теплоту через единый водяной контур. Каждый агрегат может работать как в режиме охлаждения, так и нагрева в течение года, температура воды в водяном контуре поддерживается с помощью котельной/градирни либо используется грунтовой водяной контур. Крышные кондиционеры с водяным конденсатором компании Lennox обеспечивают наиболее энергоэффективное решение для комфортного кондиционирования однозональных зданий и помещений.

- Первоклассная энергоэффективная система благодаря применению спиральных компрессоров, работающих на экологически безопасном хладагенте R410A, и высокопроизводительному пластинчатому водяному теплообменнику
- Крышные кондиционеры тепловой насос с водяным охлаждением наиболее современное и гибкое оборудование компании Lennox для больших интегрированных коммерческих применений: Работа каждого агрегата независит от других, и агрегат может иметь независимое управление
- Сверхнизкошумное решение, благодаря отсутствию наружных вентиляторов
- Расширенный микропроцессорный контроллер CLIMATIC™ 50, разработанный для увеличения энергоэффективности и надежной работы Контроллер предусматривает работу по схеме ведущий/ведомый и имеет широкие сетевые возможности
- Выгодное моноблочное решение для быстрого и простого монтажа
- Малый вес агрегатов упрощает подъем и установку для любых конфигураций здания
- Различные конфигурации воздушных потоков и разнообразные монтажные рамы для соответствия всем типам зданий
- Возможность установки дополнительных нагревателей с интеллектуальным управлением, позволяет выбирать наиболее эффективный способ нагрева в зависимости от температуры наружного воздуха
- Управление подмешиванием свежего воздуха и естественное охлаждение для здорового и комфортного микроклимата в помещении
- Поставляются кондиционеры следующих исполнений:
 - Тепловой насос

Агрегаты с двойным нагревом выполняют термодинамический и газовый нагрев воздуха

Основные компоненты

- Спиральные компрессоры, хладагент R410A
- Компактный пластинчатый теплообменник из нержавеющей стали с низким гидравлическим сопротивлением для снижения мощности насосов, включает весь комплект необходимых гидравлических компонентов
- Электрический щиток соответствует стандарту EN 60204-1, автоматические выключатели, пронумерованные провода и разъемы
- Негорючая изоляция класса М0
- Большой выбор основных и предварительных воздушных фильтров до класса F7
- Клиноременный вариатор скорости вентилятора входит в стандартную комплектацию всех моделей
- Съемный моющийся поддон для сбора конденсата из алюминия, сифон входит в стандартную комплектацию
- Коррозионностойкий корпус (из оцинкованной стали или алюминия) с заклепками из нержавеющей стали

Контроллер Climatic™ 50

- 16-битный процессор с флэш памятью 21 Мбайт
- Отображает до 50 аварийных сигналов
- 100 настраиваемых параметров и 100 параметров диагностики и мониторинга
- Расширенные функции контроллера: усовершенствованное управление работой компрессоров, динамическое оттаивание, интеллектуальное управление подмешиванием наружного воздуха, автоматический переход на летнее/зимнее время
- Расширенные сетевые возможности: Ведущий/Ведомый, протоколы RS485 Modbus, Lon, Bacnet
- Подключается к системам мониторинга и диспетчеризации компании LENNOX ADALINK, Lennoxvision

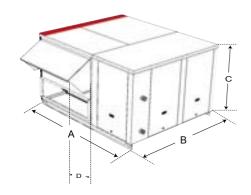
КРЫШНЫЕ КОНДИЦИОНЕРЫ ВОДЯНОЕ ОХЛАЖДЕНИЕ

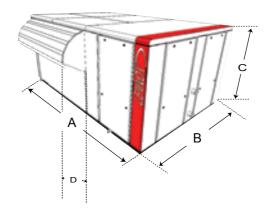
BWH / FWH = Крышный кондиционер водяной тепловой насос BWH / FWH = Крышный кондиционер водяной тепловой насос с газовым нагревателем

Технические характеристики

технические характеристики					*
BALTIC™		45	55	65	75
Режим охлаждения BWH					
Холодопроизводительность брутто 30-35°C (1)	кВт	48	57,8	72,7	85,0
Потребляемая мощность ⁽²⁾	кВт	11,2	13,8	16,3	20,1
Холодильный коэффициент EER брутто		5,1	5,0	5,2	5,2
Режим нагрева BWM					
Теплопроизводительность брутто ⁽¹⁾	кВт	53,4	65	85,6	102
Потребляемая мощность ⁽²⁾	кВт	12,1	15,3	18,8	23,2
Коэффициент энергоэффективности СОР брутто		5,0	4,8	5,1	5,1
Нагрев – газовый нагреватель				·	
Теплопроизводительность газового модуля (стандартный / высокий)	кВт	30,7 / 55,8	30,7 / 55,8	55,8 / 111,6	55,8 / 111,6
Эффективность	%	93	93	92	92
Холодильный контур					
Кол-во компрессоров / Кол-во контуров	ШТ.	2/1	2/1	2/2	2/2
Тип компрессора	Тип	Сдвоенные спиральные	Сдвоенные спиральные	Спиральный	Спиральны
Гидравлический контур				·	
Сопротивление при номинальном расходе воды	кПа	43	43	42	44
Патрубки вход / выход	DN	50	50	65	65
Характеристики вентиляторов					
Номинальный расход воздуха	м3/ч	8100	9000	11500	14200
Минимальный расход воздуха	м3/ч	6500	6500	8600	8600
Максимальный расход воздуха	м3/ч	9700	9700	13000	13000
Акустические характеристики					
Уровень звуковой мощности (стандартный агрегат) BWH	дБА	78	78	78	79
Уровень звуковой мощности на притоке BWH	дБА	83	84	82	85
Уровень звуковой мощности на притоке BWH	дБА	85	87	89	
FLEXY™		85	100	120 150	170

FLEXY™		85	100	120	150	170
Режим охлаждения FWH						
Холодопроизводительность брутто ⁽¹⁾	кВт	93,2	124	138	165	194
Потребляемая мощность ⁽²⁾	кВт	21,8	29,3	33,3	38,3	47,7
Холодильный коэффициент EER брутто		5	5,1	5,1	5,2	5,0
Режим нагрева FWM						
Теплопроизводительность брутто ⁽¹⁾	кВт	111	140	157	186	225
Потребляемая мощность ⁽²⁾	кВт	24,4	32,5	37,7	40,5	52,4
Коэффициент энергоэффективности СОР брутто		5,1	5,0	4,8	5,3	5,0
Нагрев – газовый нагреватель						
Теплопроизводительность газового модуля (стандартный / высокий)	кВт	55,2 / 110,4	55,2 / 110,4	55,2 / 110,4	110,4 / 165,6	110,4 / 165,6
Эффективность	%	92	92	92	92	92
Холодильный контур						
Кол-во компрессоров / Кол-во контуров	ШТ.	2/2	2/2	2/2	3/2	4/2
Тип компрессора	Тип	Спиральный	Спиральный	Спиральный	Сдвоенные спиральные	Сдвоенные спиральные
Гидравлический контур						
Сопротивление при номинальном расходе воды	кПа	60	58	58	76	64
Патрубки вход / выход	DN	50	65	65	65	65
Характеристики вентиляторов		1			1	'
Номинальный расход воздуха	м3/ч	15000	18500	20500	26000	30000
Минимальный расход воздуха	м3/ч	12000	12000	15000	18000	21000
Максимальный расход воздуха	м3/ч	23000	23000	23000	35000	35000
Акустические характеристики				,		
Уровень звуковой мощности (стандартный агрегат) FWH	дБА	77	77	77	82	82
Уровень звуковой мощности на притоке FWH	дБА	85	90	89	91	94
Уровень звуковой мощности на притоке FWM	дБА	84	87	89	88	90

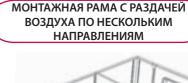

Примечание:

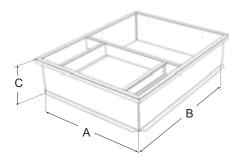

⁽¹⁾ Все данные приведены при следующих условиях, электропитание 400В/3Ф/50Гц, номинальные расход воздуха и свободный напор

Лето: Температура воды на входе 29° С / Δ T 6° С – температура воздуха 27° С / 47% / 3има: Температура воды на входе 10° С / Δ T 5° С – температура воздуха 20° С (2) включая компрессор и приточный вентилятор (центробежный)

Крышные кондиционеры BALTIC™ и FLEXY™ участвуют в программе RT сертификации Eurovent (www.eurovent-certification.com)

Габаритные размеры и масса

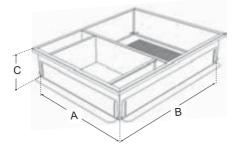



КРЫШНЫЕ КОНДИЦИОНЕРЫ С ВОДЯНЫМ КОНД	45	55	65	75	85	100	120	150	170			
Рисунок												
A	MM	19	190		2260		2200		22	00		
В	MM	22	35	28	73		3350		43	80		
С	MM	1221		1225			1510		1384			
D	MM	4	18	418		360			45	50		
Macca												
Стандартный агрегат	КГ	494	515	674	733	790	874	955	1217	1300		
Агрегат с газовым нагревом	КГ	678	693	904	960	1111	1186	1262	1631	1694		

Габаритные размеры монтажных рам

НЕРЕГУЛИРУЕМАЯ МОНТАЖНАЯ РАМА (ПОСТАВЛЯЕТСЯ В РАЗОБРАННОМ ВИДЕ)

МОНТАЖНАЯ РАМА, РЕГУЛИРУЕМАЯ ПО УГЛУ НАКЛОНА


вытяжным вентилятором

вытяжным вентилятором

(горизонтальная подача)

(вертикальная подача)

Монтажная рама с

2740

1030

2056

2762

1220

3437

1030

2056

3460

1220

1947

900

1674

1836

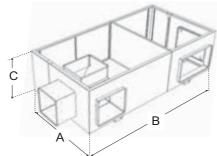
740

ММ

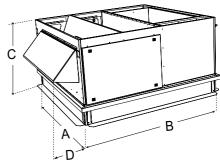
MM

MM

ММ


2297

1050


2124

2186

890

ВЫТЯЖНАЯ МОНТАЖНАЯ РАМА (для агрегатов с дополнительным нагревателем)

КРЫШНЫЕ КОНДИЦИОНЕРЫ ВОДЯНОЕ ОХЛАЖДЕНИЕ

Дополнительные функции и принадлежности

Энергоэффективность и дополнительный комфорт

- Модуль теплоутилизации: Позволяет утилизировать теплоту вытяжного воздуха для нагрева или охлаждения наружного воздуха и экономить энергию.
- Высокоэффективный приточный вентилятор с переменным расходом воздуха: Данный вентилятор значительно уменьшает потребление электроэнергии крышным кондиционером благодаря электронно-коммутируемому электродвигателю и интеллектуальному непосредственному приводу. Контроллер CLIMATIС™ 50 регулирует расход приточного воздуха в зависимости от мощности охлаждения или нагрева и обеспечивает требуемое количество наружного воздуха.
- Плавный пуск приточного вентилятора: При пуске агрегата расход воздуха увеличивается постепенно.
- Газовый воздухонагреватель с плавным регулированием мощности: Горелка поддерживает постоянное соотношение смеси газ/воздух и оптимальную эффективность при любой тепловой мошности.
- Естественное охлаждение: Использование экономайзера (секция смешивания) является наиболее эффективным способом уменьшить эксплуатационные расходы при помощи естественного охлаждения, когда это возможно.
- Точное количество наружного воздуха: Контроллер CLIMATIC™ 50 периодически калибрует открытие клапана наружного воздуха для гарантированной подачи требуемого количества наружного воздуха. Данная функция обеспечивает лучший контроль содержания СО, и экономию энергоресурсов благодаря снижению мощности требуемой на охлаждение или нагрев дополнительного наружного воздуха.
- Низкошумное исполнение: Для достижения низкого уровня шума применяется более низкошумный вентилятор конденсатора и звукоизоляция компрессоров. Для агрегатов $\mathsf{FLEXY}^\mathsf{m}$ II производится акустическая изоляция компрессорной секции.
- Комплект для работы при низкой температуре воды: Для работы при низкой температуре входящей воды в режиме охлаждения (например, грунтовой водяной контур). Поддерживается минимальная температура конденсации в холодильном контуре посредством регулирования расхода воды через теплообменник. Данная опция обеспечивает точный контроль расходы воды для регулирования давления конденсации в режиме охлаждения при низкой температуре входящей воды.

Дополнительный нагрев

• Высокоэффективный газовый воздухонагреватель с КПД 92%: Высокоэффективный газовый воздухонагреватель может иметь ступенчатое (2-4 ступени) или плавное (20-100%) регулирование мощности.

Встраивание в архитектурные конструкции

- Нерегулируемая монтажная рама: Для удобства транспортировки рама поставляется в разобранном виде. Рама легко собирается при
- Монтажная рама, регулируемая по высоте наклона: Регулирование угла наклона рамы до 4-5 % осуществляется во всех направлениях.
- Монтажная рама с раздачей воздуха по нескольким направлениям: Обеспечивает различные варианты воздушных потоков, в том числе горизонтальные забор и подача воздуха с одной стороны.
- Различные конфигурации воздушных потоков: Горизонтальная и вертикальная вниз являются стандартными опциями для всех крышных кондиционеров Lennox. Вертикальная вверх возможна только для серии Flexy II.

- Специальная монтажная рама: Данная рама используется при замене старого агрегата на новый крышный кондиционер
- Особый цвет окраски: Агрегаты могут поставляться окрашенными в различные цвета.

🐠 Высокое качество воздуха в помещении

- Управление подмешиванием наружного воздуха: Экономайзер позволяет обеспечить подмешивание необходимого количества наружного воздуха для соответствия требованиям качества воздуха в помещении.
- Датчик качества воздуха в помещении: Информирует о качестве воздуха в помещении, позволяет автоматически регулировать минимальный приток наружного воздуха в зависимости от количества людей в помещении. Измеряет уровень СО2 в воздухе помещения и регулирует подачу наружного воздуха.
- Гравитационный клапан вытяжного воздуха: Гравитационный клапан вытяжного воздуха снижает давление в здании при поступлении наружного воздуха.
- Осевой вытяжной вентилятор: Обеспечивает снижение избыточного давления воздуха при подаче большого количества наружного воздуха.
- Вытяжная монтажная рама с радиальным вентилятором и воздушным клапаном: Если необходимо точно поддерживать баланс воздуха в помещении. Радиальный вентилятор позволяет выбрасывать количество воздуха меньшее или равное номинальному расходу агрегата при статическом давлении до 300 Па и снизить затраты на электроэнергию и обслуживание.
- Комплект качества воздуха в помещении (IAQ) с бактерицидной лампой (только Flexy II): Ультрафиолет уничтожает микроорганизмы, поддерживая чистоту испарителя и постоянное падение давления на нем, что позволяет снизить энергопотребление и улучшить качество воздуха, подаваемого в помещение.
- Моющиеся воздушные фильтры класса G4 со сменным фильтрующим материалом: Позволяет заменять только загрязнившийся фильтрующий материал вместо замены всего фильтра с рамкой. Это хорошее решение для снижения эксплуатационных затрат.
- Воздушные фильтры класса EU4/F7: Комплект из двух фильтров толщиной 50 мм. Наличие фильтра класса G4 перед фильтром класса F7 снижает вероятность преждевременного загрязнения фильтра класса F7.
- Панели с двойными стенками: Данное исполнение позволяет предотвратить появление бактерий на пористых поверхностях и значительно упрощает чистку панелей.
- Аналоговый датчик загрязнения фильтра: Дифференциальный датчик давления измеряет перепад давления на фильтре и теплообменнике и предупреждает о необходимости замены фильтра, что позволяет снизить энергопотребление и улучшить качество воздуха.

Безопасность

- Переходная рама: Используется для соответствия французским нормам СН40 (Общественные здания), которые запрещают во Франции устанавливать крышные кондиционеры непосредственно на монтажную раму.
- Датчик дыма: Ионная головка датчика реагирует на любой тип дыма. При появлении дыма агрегат останавливается, клапан рециркуляционного воздуха полностью закрывается, а клапан наружного воздуха полностью открывается.
- Противопожарный термостат: Данный защитный термостат обеспечивает защиту от пожара посредством выключения агрегата и закрытия клапана наружного воздуха.
- Электронное реле протока: Новые крышные кондиционеры с водяным конденсатором оборудованы передовым электронным реле протока (входит в стандартную комплектацию). Реле не содержит движущихся частей, и все компоненты изготовлены из нержавеющей стали. Обеспечивает точную защиту от малого протока любой жидкости и не требует обслуживания.

Oписание контроллера CLIMATIC™ 50

Крышные кондиционеры компании Lennox оснащаются микропроцессорными контроллерами CLIMATIС $^{\mathrm{TM}}$ 50 нового поколения.

Контроллеры CLIMATIC™ 50 имеют инновационное ПИД регулирование, которое гарантирует более высокую точность контроля температуры и экономию энергии. А также выравнивание времени наработки компрессоров.

Контроллер имеет защитные алгоритмы, генерирующие аварийные сигналы, и сохраняет в памяти последние 32 аварийных сигнала. Контроллер также имеет расширенные функции работы по расписанию с возможностью задавать различные уставки для каждого из 4 временных периодов.

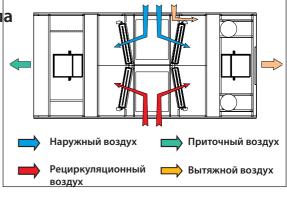
Контроллер имеет различные удобные для пользователя пульты управления, сетевые интерфейсы для систем диспетчеризации, а также возможность управлять несколькими агрегатами на одном объекте.

Основные стандартные функции контроллера CLIMATIC™ 50

- Приоритет включения нагревателей: Позволяет пользователю выбирать последовательность включения нагревателей.
- Автоматический переход на летнее/зимнее время: Контроллер СLIMATIС™ 50 выполняет автоматический перевод часов на летнее/ зимнее время.
- Функция снижения шума: Ночью, когда необходима меньшая производительность и требуется более низкий уровень шума, контроллер снижает производительность крышного кондиционера для ограничения уровня шума.
- Последовательное включение: После возобновления подачи электропитания все агрегаты не включаются одновременно.
- Конфигурируемые контакты (2 релейных входа): Контроллер CLIMATIC™ 50 имеет 2 релейных входа, а также релейный выход для сигнала общей аварии.

Дополнительные возможности контроллера CLIMATIC™ 50

- Расширенные функции управления: Благодаря специальному алгоритму контроллера Climatic™ 50 и датчикам, возможны две расширенные функции управления: Управление экономайзером по энтальпии и контроль влажности.
- DS 50 Сервисный пульт технического обслуживания: Пульт технического обслуживания является устройством "подключи и работай". С пульта можно настроить до 207 параметров, просмотреть до 188 переменных и до 45 аварийных кодов, а также просмотреть журнал аварий, в котором регистрируются последние 32 аварийных сигнала.
- DC50 Программируемый пульт управления:Удобный в эксплуатации пульт дистанционного управления. Прекрасно вписывается в интерьер любого помещения. С пульта DC50 можно изменить настройки таймера, уставки температуры и процентный расход наружного воздуха для каждого периода времени.
- DM 50 Сетевой программируемый пульт управления: Предоставляет такие же возможности, что и пульт DC50, но позволяет управлять до 12 агрегатами, объединенными в сеть.
- Плата термостата TCB: Обеспечивает дополнительные цифровые входы для управления агрегатом. Контроллер CLIMATIC™ 50 продолжает управлять устройствами и функциями безопасности, оттайкой и естественным охлаждением.


Сетевые функции контроллера CLIMATIC™ 50

- Сетевой интерфейс Modbus: Интерфейс Modbus применяется для подключения агрегатов к системе управления инженерным оборудованием здания (BMS). Никакие дополнительные платы не требуются. Одна плата применяется для подключения одного крышного агрегата.
- Сетевой интерфейс Lontalk: Интерфейс LonTalk® применяется для подключения агрегатов к системе управления инженерным оборудованием здания (BMS). Никакие дополнительные платы не требуются. Одна плата применяется для подключения одного крышного агрегата.
- **Сетевой интерфейс Bacnet:** Интерфейс Bacnet® применяется для подключения агрегатов к системе управления инженерным оборудованием здания (BMS).
- Система дистанционного мониторинга ADALINK™: ADALINK™ разработка компании LENNOX для мониторинга и управления оборудованием кондиционирования и вентиляции. Максимальное количество 32 агрегата на одном объекте. Система отображает карту объекта с установленными агрегатами, для каждого агрегата показан режим работы. По щелчку на рисунке агрегата пользователь переходит к просмотру параметров работы данного агрегата, журнала аварий и графиков, а также изменению уставок и временных периодов. Вся информация представлена в красивом графическом виде. Adalink может управляться местно через локальную компьютерную сеть или дистанционно при помощи модема.

FX · 25 → 165 kW

Крышные кондиционеры с утилизацией тепла

Основные применения

- Театры, кинотеатры, конференц-залы
- Большие коммерческие здания (Супермаркеты, торговые центры, аэропорты, рестораны...)

Преимущества оборудования

- Одно и наиболее энергоэффективных решений с термодинамической утилизацией теплоты воздуха
- Идеально подходит для применений с большим притоком наружного воздуха
- Разработан для обеспечения точной балансировки вентиляции
- Моноблочное решение для быстрого и простого монтажа
- Большой выбор сетевых интерфейсов

Обзор модельного ряда

Крышные кондиционеры FX являются наиболее экономически выгодным решением для высокоэффективного комфортного кондиционирования однообъемных зданий и помещений с необходимостью подачи большого количества наружного воздуха

- Первоклассная эффективная система благодаря четырехклапанной системе термодинамической утилизации тепла
- Высокая гибкость благодаря двум центробежным вентиляторам (приточный и вытяжной) позволяет производить плавную балансировку воздуха и регулирование смешения наружного и вытяжного воздуха

- Совершенный контроль давления воздуха внутри здания позволяет избежать риска открытия дверей по причине разности давлений
- Агрегат может полностью подключаться к системам воздуховодов (приток и втяжка) для установки в техническом помещении
- Агрегат поставляется только исполнения тепловой насос, и может работать с подачей 100% свежего воздуха до температуры наружного воздуха -10°C
- Расширенный микропроцессорный контроллер CLIMATIC™ 50, разработанный для увеличения энергоэффективности и надежной
 работы. Контроллер предусматривает работу по схеме ведущий/ведомый и имеет широкие сетевые возможности

Основные компоненты

- Компрессоры, работающие на хладагенте R407C
- Электрический щиток соответствует стандарту EN 60204-1, автоматические выключатели, пронумерованные провода и разъемы
- Негорючая изоляция класса М0
- Клиноременный вариатор скорости приточного и вытяжного вентилятора входит в стандартную комплектацию всех моделей
- Коррозионностойкий корпус с заклепками из нержавеющей стали

Контроллер Climatic™ 50

- 16-битный процессор с флэш памятью 21 Мбайт
- Отображает до 50 аварийных сигналов
- 100 настраиваемых параметров и 100 параметров диагностики и мониторинга
- Расширенные функции контроллера: усовершенствованное управление работой компрессоров, динамическое оттаивание, интеллектуальное управление подмешиванием наружного воздуха, автоматический переход на летнее/зимнее время
- Расширенные сетевые возможности: Ведущий/Ведомый, протоколы RS485 Modbus, Lon, Bacnet
- Подключается к системам мониторинга и диспетчеризации компании LENNOX ADALINK, Lennoxvision

Технические характеристики

FLEXY [™]	FX	25	30	35	40	55	70	85	100	110	140	170
Режим охлаждения												
Холодопроизводительность брутто (темп. нар. воздуха 35°С, темп. на входе 27 °С, отн. влажн. 47%, наружн. возд. 25%)	кВт	24,7	30,3	34,5	41,5	48,2	68,9	82,5	100	112	141	164
Холодопроизводительность брутто (темп. нар. воздуха 32°С, темп. на входе 26°С, отн. влажн. 60%, наружн. возд. 50%)	кВт	27,1	33,2	33,6	44,7	51,9	75,3	90	108	122	154	180
Коэффициент энергоэффективности СОР брутто (темп. нар. вс 35°С, темп. на входе 27°С, отн. влажн. 47%, наружн. возд. 25%)	здуха	2,3	2,2	2,3	2,5	2,5	2,7	2,4	3,1	3,1	3,0	2,7
Коэффициент энергоэффективности СОР брутто (темп. нар. воз, 32°С, темп. на входе 26°С, отн. влажн. 60%, наружн. возд. 50%)	духа	2,6	2,4	2,3	2,7	2,7	3,0	2,7	3,5	3,5	3,4	3,0
Потребляемая мощность при предельных рабочих условиях	кВт	13	16	16	22	26	31	42	50	51	66	86
Режим нагрева												
Теплопроизводительность нетто (темп. нар. воздуха 7°С, темп. на входе 20°С)	кВт	24,2	29,8	32,2	38,4	46	66,3	82,2	88,1	106,3	136,8	166,4
Коэффициент энергоэффективности СОР нетто (темп. нар. воздуха 7°С, те входе 20°С)	мп. на	2,9	2,8	2,8	2,6	2,4	3,1	2,9	3,3	3,4	3,5	3,1
Характеристики холодильного контура				•					•		•	
Кол-во компрессоров / Кол-во контуров	ШТ.	2/2	2/2	2/2	2/2	2/2	2/2	2/2	2/2	4/4	4/4	4/4
Масса хладагента в контуре	ΚΓ	4	4	5	6	6	10	11	12	7	7,5	8,5
Максимальная температура наружного воздуха в режиме охлаждения	°C	40	39	42	41	42	42	42	44	44	43	41
Вентиляция												
Номинальный расход воздуха при 150 Па	м3/ч	4000	5000	6000	7200	9000	10800	13500	17300	19000	24000	27000
Минимальный расход воздуха	м3/ч	3200	4000	4800	5800	7200	8600	10800	13800	15200	19200	24000
Максимальный расход воздуха ⁽¹⁾	m³/h	4500	5500	6600	8100	9900	12200	15400	18200	21500	25500	30000
Акустические характеристики												
Уровень звуковой мощности	дБА	85	87	83	85	90	90	94	95	92	96	98
Уровень звуковой мощности (приток)	дБА	80	83	78	80	83	82	88	93	87	91	93

^{(1):} Холодопроизводительность указана при номинальном расходе воздуха. Для получения значения холодопроизвоительности при максимальном расходе воздуха применяется коэффициент 1.02.

Габаритные размеры и масса

1 Кондиционер

2 Монтажная рама

3 Опорная рама

FLEXY™	FX	25	30	35	40	55	70	85	100	110	140	170
Рисунок 1 - размеры агрегата FX												
Α	MM	3970	3970	4750	4750	4750	5050	5050	5050	5650	5650	5650
В	MM	1610	1610	2255	2255	2255	2255	2255	2255	2255	2255	2255
С	MM	1055	1055	1340	1340	1340	1725	1725	1725	2150	2150	2150
Рисунок 2 - размеры монтажной рамы FX												
E	MM	1540	1540	2175	2175	2175	2175	2175	2175	2175	2175	2175
F	MM	3960	3960	4730	4730	4730	5040	5040	5040	5630	5630	5630
Рисунок 3 - размеры опор	оной рам	ıы FX										
G	MM	1540	1540	2175	2175	2175	2175	2175	2175	2175	2175	2175
Н	MM	3960	3960	4725	4725	4725	5040	5040	5040	5630	5630	5630
Масса												
Масса - стандартный агрегат	КГ	950	980	1400	1450	1600	1800	1900	2000	2300	2400	2600

Компрессорно- конденсаторные блоки и

Сухие градирни

Providing indoor climate comfort

66

AIRCUBE™	
19 -193 кВт	62
• Сухие градирни	
FC ECA/FC CHV	

• Конденсаторы

26 - 850 кВт

CHV / ECA / NEOSTAR

• Компрессорно-конденсаторные блоки

21 - 1000 κBτ 70

Aircube™ • 19 - 193 kW

Компрессорно-конденсаторные блоки с воздушным охлаждением

Основные применения

• Системы кондиционирования зданий с центральными кондиционерами

Преимущества оборудования

- Энергоэффективность
- Надежность
- Высокое качество

Общая информация

Компрессорно-конденсаторные блоки с воздушным охлаждением серии AIRCUBE™ работают на экологически безопасном хладагенте R410A и поставляются модели только охлаждение и тепловой насос. Блоки сконструированы на основе чиллеров **ECOLEAN™**.

Серия блоков **AIRCUBE™** обеспечивает низкий уровень шума, высокую эффективность, современный дизайн и адаптацию к требованиям заказчика.

Компания LENNOX приняла во внимание все современные требования при создании серии блоков, которая обеспечивает максимальный комфорт пользователю.

Основные компоненты

- Корпус из оцинкованного стального листа
- Окрашен полиэфирной эмалью
- Низкоскоростной осевой вентилятор конденсатора
- Удобный доступ ко всем компонентам
- Герметичный спиральный компрессор
- Отсек с аппаратурой управления и защиты соответствует требованиям стандарта EN 60204-1
- 1 или 2 (в зависимости от типоразмера) независимых холодильных контура
- Реле высокого и низкого давления
- Патрубки подсоединения холодильных труб : Медные патрубки под пайку
- Для более лучшего и быстрого обслуживания и ремонта настройка таймеров защиты от коротких циклов и оттайки (для агрегатов с тепловым насосом) производится без снятия панели электрического щитка.
- Для повышения безопасности эксплуатации и обслуживания электрический щит оборудован автоматическими выключателями каждой нагрузки вместо плавких предохранителей.

Технические характеристики

AIRCUBE™	KSCM/HM	22E	26E	32E	38E	43E	
Режим охлаждения							
Холодопроизводительность (1)	кВт	19,7	24,7	28,4	36,1	42	
Коэффициент энергоэффективности EER		3,06	3,05	2,95	3,03	2,98	
Режим нагрева							
Теплопроизводительность ⁽²⁾	кВт	19,8	25	28,6	36	40,2	
Коэффициент энергоэффективности СОР		3,20	3,21	3,12	3,24	2,98	
Электрические характеристики	·						
Электропитание	В/фаз/Гц			400-N/3/50			
Максимальная потребляемая мощность	кВт	8,55	10,8	12,5	16,4	17,7	
Акустические характеристики							
Общий уровень звуковой мощности ⁽³⁾	дБА	76	78	81	80	81	
Холодильный контур				•			
Количество контуров (режим охлаждения)	шт.			1			
Компрессор	шт.	т. 1					
Количество ступеней мощности	чество ступеней мощности шт. 1						

AIRCUBE™	KSCM/HM	52D	64D	76D	86D	112D	128D	152D	214D
Режим охлаждения									
Холодопроизводительность (1)	кВт	49,4	56,7	72,1	83,9	104	115	141	193
Коэффициент энергоэффективности EER	•	3,05	2,94	3,04	2,96	3,03	3,1	3,05	3,11
Режим нагрева									
Теплопроизводительность ⁽²⁾	кВт	50,1	57,1	71,9	80,3	105	114	137	191
Коэффициент энергоэффективности СОР	•	3,21	3,1	3,24	3,1	3,24	3,2	3,13	3,19
Электрические характеристики									
Электропитание	В/фаз/Гц				400/	/3/50			
Максимальная потребляемая мощность	кВт	21,6	25	32,8	35,5	45,6	48,7	59,9	83,0
Акустические характеристики					•		•		
Общий уровень звуковой мощности ⁽³⁾	дБА	81	84	83	84	87	87	90	89
Холодильный контур					•				•
Количество контуров (режим охлаждения)	ШТ.					2			
Компрессор	ШТ.		:	2		3 4			
Количество ступеней мощности	ШТ.					2			•

Технические характеристики - Высоконапорное исполнение (FP1/FP2)

KSCM/HM ИСПОЛНЕНИЕ FP1/FP2 (НАРУЖНЫЙ БЛОК)	KSCM/HM	112D	128D	152D	214D	
Высоконапорный вентилятор конденсатора						
Количество	ШТ.		2		4	
Электропитание	В/фаз/Гц	400/3/50				
Исполнение FP1						
Макс. располагаемое статическое давление - исполнение FP1 ⁽⁵⁾	Па		1:	25		
Номинальный расход воздуха - исполнение FP1	м3/ч		38000		56000	
Потребляемая мощность электродвигателя - исполнение FP1	кВт		5		10	
Скорость вентилятора - исполнение FP1	об/мин		90	00		
Исполнение FP2						
Макс. располагаемое статическое давление - исполнение FP2 ⁽⁵⁾	Па		2	50		
Номинальный расход воздуха - исполнение FP2	м3/ч		44000		56000	
Потребляемая мощность электродвигателя - исполнение FP2	кВт		9,2		18,6	
Скорость вентилятора - исполнение FP2	об/мин		14	-50		
Акустические характеристики						
Уровень звукового давления - исполнение FP1 ⁽⁴⁾	дБА	59 59 59		59	62	
Уровень звуковой мощности - исполнение FP2 ⁽⁴⁾	дБА					

⁽¹⁾ Температура испарения: 7°С, наружная температура: 35°С

⁽²⁾ Температура конденсации: 50°С, наружная температура 7°С по сухому термометру / 6°С по влажному термометру

⁽³⁾ При условиях Eurovent

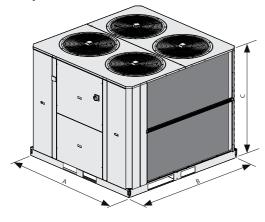
⁽⁴⁾ Измерено на расстоянии 10 м в условиях свободного звукового поля (с звукоизоляцией компрессоров)

⁽⁵⁾ Для мин. расхода воздуха

Предельные эксплуатационные характеристики

AIRCUBE TM	KSCM/ HM	22E	26E	32E	38E	43E	52D	64D	76D	86D	112D	128D	152D	214D
Предельные эксплуатационные характеристики														
Максимальная температура наружного воздуха	°C		45		4	7	4	5	4	7		4	7	
Минимальная температура наружного воздуха ^{(1) (2) (3)}	°C						-1	5/0/+	19					
Минимальная температура испарения (охлаждение)	°C							-1						
Минимальная температура наружного воздуха (нагрев)	°C							-10						
Максимальная температура конденсации	°C							65						
аксимальная температура испарения °C 12														
Минимальная температура испарения	°C -22													

⁽¹⁾ Стандартный / С низкотемпературным комплектом 0°С / -15°С


(2) Стандартно для КЅНМ

Параметры фреоновых трубопроводов


AIRCUBE™	KSCM/HM	22E	26E	32E	38E	43E	52D	64D	76D	86D	112D	128D	152D	214D
Общая длина от 0 до 30 м														
THE MOTE TOUR (MOUTHER 1)	Жидкостная линия	1/2"				5/	8"					3/4"		7/8"
Диаметр труб (контур 1)	Газовая линия	7/8"	11	/8"	1.3	3/8"	11.	/8"	1 3	/8"		1 5	/8"	
THE MOTE TOUR (MOUTHER 2)	Жидкостная линия	-	-	-	-	-			5/	8"			3/4"	7/8"
Диаметр труб (контур 2)	Газовая линия	-	-	-	-	-	1 1.	/8"		1 3	3/8"		1.5	5/8"
Максимальная длина вертикального участка														
Длина вертикального участка	M							16						
Максимальная общая длина														
Общая длина	M							65						
Максимальное количество изгибов	шт.							12						

Габаритные размеры и масса

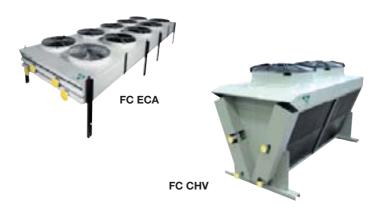
Стандартные блоки

Блоки с высоконапорными вентиляторами

НАРУЖНЫЙ БЛОК	KSCM/HM	22E	26E	32E	38E	43E	
A	MM			1195			
В	MM	660	980				
С	MM		1375				
Эксплуатационная масса	КГ	168	219	221	239	258	

НАРУЖНЫЙ БЛОК	KSCM/HM	52D	64D	76D	86D	112D	128D	152D	214D
A	MM		19	1960 2250					
В	MM		1195 1420				1420		2300
C	MM		1375			1875			1975
Эксплуатационная масса	КГ	452	463	499	537	748	828	932	1684

НАРУЖНЫЙ БЛОК + ИСПОЛНЕНИЕ FP1/FP2	KSCM/HM	112D	128D	152D	214D		
A	MM	2250					
В	MM	1420 2300					
С - исполнение FP1 / FP2	MM	1875 1975					
D - исполнение FP1 / FP2	MM		28	30			
Эксплуатационная масса KSHM исполнение FP1/FP2	КГ	788	868	972	1764		


⁽³⁾ Стандартно для КЅСМ

Дополнительные принадлежности и функции

- Высоконапорный вентилятор FP1/FP2 (типоразмеры 112D/128D/152D)
- Воздухозаборный пленум для исполнений FP1/FP2
- Квадратный вытяжной пленум для исполнений FP1/FP2
- Дополнительный поддон для сбора конденсата для исполнений FP1/FP2
- Главный выключатель
- Реле контроля фаз
- Подогреватель картера компрессора (для агрегатов только охлаждение), стандартная комплектация для тепловых насосов
- Защитные решетки конденсатора
- Коррозионностойкие конденсаторы
- Устройство плавного пуска (400 В; 3 фазы)
- Управление двигателем внутреннего блока посредством сухих контактов
- Байпас горячего газа
- Заправка хладагентом
- Ручные вентили: жидкостной и газовой линий
- Виброизоляторы
- Звукоизоляция компрессора
- Сетевая плата ModBus

FC ECA/FC CHV . 26 - 850 kW

Сухие градирни

Основные применения

 Кондиционирование, естественное охлаждение ... и охлаждение всех видов жидкостей совместимых с медью при максимальной температуре на входе 100°С

Преимущества оборудования

- Отсутствует бактериальное загрязнение воздуха и воды
- Нет потребления воды
- Более легкое обслуживание
- Гибкость эксплуатации в зимнее время
- Простой и дешевый монтаж
- Малая занимаемая площадь

Общая информация

Серия сухих градирен **FC** разработана для охлаждения воды конденсаторов холодильных агрегатов, естественного охлаждения, охлаждения различных жидкостей, технологических процессов и других применений.

- 4 скорости вращения вентиляторов
- Может быть установлена с вертикальным или горизонтальным воздушным потоком

Сухие градирни воздушного охлаждения серии **FC ECA** представляют собой оснащенные вентиляторами теплообменники наружной установки для охлаждения жидкостей совместимых с медью (обычно гликолесодержащих растворов), рабочая температура не должна превышать 100°С. Температура замерзания жидкости должна быть как минимум на 5°С ниже минимальной температуры наружного воздуха на месте установки.

Серия FC CHV была разработана специально для применений с ограниченным пространством для установки.

Обозначение

	FC ECA 06P 7L03 A1	
FC ECA	Конденсатор	
06P		06P = стандартная 08P = средняя 12P = низкая 16P = очень низкая
7	Ulliameto rehtungtona	7 = Ø 762 mm 9 = Ø 900 mm
L03	Расположение и количество вентиляторов	L = линейное P = параллельное

Преимущества:

Основными преимуществами являются: простой и дешевый монтаж (стальные трубы); гибкость в применении; гарантированная и надежная работа летом и зимой; легкость контроля температуры воды на выходе в зимний период; очень низкие затраты на обслуживание; отсутствие потребления воды и выделения пара; нет образования накипи; отсутствие бактериального загрязнения воды и воздуха.

Основные компоненты

Корпус:

Корпус из оцинкованного стального листа и окрашенного оцинкованного стального листа серого цвета RAL7035. Использование заклепок из нержавеющей стали 18/10 обеспечивает высокую коррозионную стойкость и надежное крепление.

Агрегаты FC CHV поставляются прикрепленными к деревянной раме и полностью упакованными.

Теплообменник:

- Медные трубки с рифленым алюминиевым оребрением для наилучшей теплоотдачи
- Коллекторы с воздуховыпускниками и сливными пробками
- Присоединительные патрубки: резьбовые до DN 50, фланцы для больших типоразмеров

Вентиляция:

FC ECA:

• Вентиляторы с непосредственным приводом оборудованы

- следующими двигателями: 06P=900 об/мин, 08P=700 об/мин, 12P=430 об/мин, 16P=380 об/мин
- Электродвигатели 3-х фазные, 400В, 50 Гц, полностью закрытые, IP55, класс F, в соответствии со стандартом СЕІ 34-1, с постоянной смазкой
- Электродвигатели подключены на заводе: к одной соединительной коробке для моделей L (двигатели в линию), к двум соединительным коробкам для моделей Р (двигатели параллельно)
- Защитные решетки вентиляторов соответствуют стандарту NF E51-190.

FC CHV:

- Вентиляторы с внешним ротором оборудованы защитными решетками, соответствующими стандарту NF E51.190.
- Наружный монтаж позволяет обеспечить легкость доступа при проведении технического обслуживания.
- Трехфазные двигатели, 400 В, 50 Гц, IP 54, класса F со встроенной зашитой

Дополнительные принадлежности и функции

Теплообменник:

- Многоконтурный теплообменник (МСІ)
- Защитное покрытие ребер (ВАЕ)
- Медное оребрение (ВСС) (Проконсультируйтесь с представительством)
- Покрытие ребер XT Blygold Polual (BXT) (только FC ECA)
- Свободный дренажный контур, когда установка не работает
- Фланцы, контрфланцы, болты и прокладки
- Стальные или латунные вентили для выпуска воздуха или слива воды

Вентиляторы:

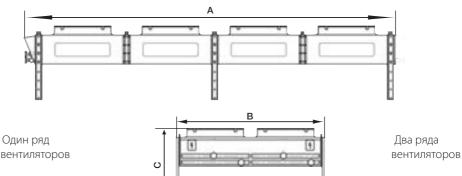
- Электродвигатели на 60 Гц (с подобранной крыльчаткой) (М60)
- 3-фазные 230 В 50 Гц вентиляторы (М25)
- 3-фазные 230 В 60 Гц вентиляторы (М26) (только FC ECA)
- Двигатели с защитным термостатом. Рекомендуются при частом включении вентиляторов (более 30 раз в течение часа) или совместно с регулированием скорости вращения (МТН) (только

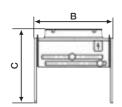
C FCA).

- Ø 900: Вентиляторы с внешним ротором (+120 мм к высоте) (MZV) (только FC ECA).
- Бесконтактный переключатель (IRP)
- Подключение для двух скоростей вращения (кроме моделей 06Р) (C2V).

Корпус (только FC ECA):

- Ножки удлиненные на 250 мм (REH) или на 840 мм (RE2)
- Упаковка в ящик (ЕСВ)
- Специальный цвет окраски (RAL)


Прочее:


• Расширительный бак (VEX)

Защита и управление:

• Обратитесь в представительство

Габаритные размеры FC ECA

	МОДЕЛЬ	ОТВОДИМАЯ М	ОЩНОСТЬ (кВт)		Ь ЗВУКОВОГО ІЕНИЯ дБА	ПОТРЕБЛЯЕМАЯ МОЩНОСТЬ	РАЗМЕРЫ А/В/С (мм)	MACCA (Kr)
		+32°C	+35°C	Lw	Lp @10м ⁽²⁾	(кВт)		
	FC ECA 06P 7L01 A1	24,9	17,9	89	51	2,6	1280/1226/1218	174
	FC ECA 06P 9L01 B1	34,9	22,0	94	56	2,6	1680/1226/1251	193
	FC ECA 06P 9L01 B2	47,3	29,2	94	56	2,6	1680/1226/1251	206
	FC ECA 06P 9L01 C2	51	35,3	94	56	2,6	2030/1226/1251	230
	FC ECA 06P 9L01 C3	58,7	41,0	94	56	2,6	2030/1226/1251	246
	FC ECA 06P 9L01 D3	65,6	45,4	94	56	2,6	2380/1226/1251	276
	FC ECA 06P 9P02 B1	71,13	54,0	97	59	5,2	1680/2310/1251	364
	FC ECA 06P 9L02 B2	93,8	63,1	97	59	5,2	3082/1226/1251	357
	FC ECA 06P 9L02 B3	99,5	68,3	97	59	5,2	3082/1226/1251	382
	FC ECA 06P 9L02 B4	110,1	76,0	97	59	5,2	3082/1226/1251	407
	FC ECA 06P 9L02 C4	126,6	87,9	97	59	5,2	3782/1226/1251	480
	FC ECA 06P 9L02 D4	141	98,5	97	59	5,2	4482/1226/1251	546
	FC ECA 06P 9L03 B3	153,8	108,2	99	61	7,8	4484/1226/1251	556
06Р (900 об/мин)	FC ECA 06P 9L03 B4	166,3	117,8	99	61	7,8	4484/1226/1251	594
	FC ECA 06P 9L03 C3	179,9	127,6	99	61	7,8	5534/1226/1251	651
	FC ECA 06P 9L04 B3	204,8	146,0	100	62	10,4	5886/1226/1251	720
	FC ECA 06P 9L04 B4	223	154,7	100	62	10,4	5886/1226/1251	770
	FC ECA 06P 9L05 B2	227,3	164,2	101	63	13	7288/1226/1251	832
	FC ECA 06P 9L05 B3	251	180,6	101	63	13	7288/1226/1251	895
	FC ECA 06P 9L05 B4	276,9	191,7	101	63	13	7288/1226/1251	957
	FC ECA 06P 9P06 B3	306,9	222,2	102	64	15,6	4484/2310/1251	1025
	FC ECA 06P 9P06 C4	379,9	263,9	102	64	15,6	5534/2310/1251	1241
	FC ECA 06P 9P08 B3	409,6	291,4	103	65	20,8	5886/2310/1251	1324
	FC ECA 06P 9P08 C3	479,9	330,6	103	65	20,8	7286/2310/1251	1499
	FC ECA 06P 9P10 B3	526,2	361,1	104	66	26	7288/2310/1251	1635
	FC ECA 06P 9P10 B4	554,9	397,8	104	66	26	7288/2310/1251	1760
	FC ECA 06P 9P12 B4	NA	472,4	105	67	31,2	8690/2310/1251	2085

⁽¹⁾ Температура воды: вход/выход 45°C/40°C при концентрации гликоля 34%

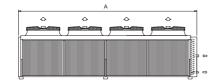
⁽²⁾ Уровень звукового давления дБА измерен на расстоянии 10 метров, на уровне крыльчатки вентилятора, в свободном пространстве, приведен для информации. Для расчета уровня звукового давления при других условиях используйте значения звуковой мощности и Lw.

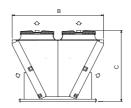
Для подбора оборудования при других расчетных условиях, пожалуйста, обратитесь в представительство Lennox.

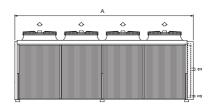
<u>Габаритные размеры - FC ECA</u>

		ОТВОДИМАЯ М	ОЩНОСТЬ (кВт)	УРОВЕН	ь звукового	ПОТРЕБЛЯЕМАЯ		
	МОДЕЛЬ			ДАВЛ	ІЕНИЯ дБА	мощность	РАЗМЕРЫ A/B/C (мм)	МАССА (кг)
		+32°C	+35°C	Lw	Lp @10м ⁽²⁾	(кВт)		
	FC ECA 08P 7L01 A1	22,9	16,5	81	43	1,35	1280/1226/1218	174
	FC ECA 08P 9L01 C1	36,3	24,3	86	48	1,35	2030/1226/1251	215
	FC ECA 08P 9L01 C2	44,1	30,0	86	48	1,35	2030/1226/1251	230
	FC ECA 08P 9L01 D2	49,5	34,3	86	48	1,35	2380/1226/1251	257
	FC ECA 08P 9L01 D3	54,6	38,4	86	48	1,35	2380/1226/1251	276
	FC ECA 08P 9L02 B1	69,1	46,4	89	51	2,7	3082/1226/1251	332
	FC ECA 08P 9L02 B2	79,3	56,1	89	51	2,7	3082/1226/1251	357
	FC ECA 08P 9L02 B3	84,7	62,5	89	51	2,7	3082/1226/1251	382
	FC ECA 08P 9L02 C3	97,5	69,5	89	51	2,7	3782/1226/1251	448
	FC ECA 08P 9L02 D3	109,1	77,6	89	51	2,7	4482/1226/1251	509
	FC ECA 08P 9L03 B2	118,6	85,8	91	53	4,05	4484/1226/1251	519
08Р (700 об/мин)	FC ECA 08P 9L04 B1	138,3	98,0	92	54	5,4	5886/1226/1251	620
	FC ECA 08P 9L03 C3	149,4	106,5	91	53	4,05	5534/1226/1251	651
	FC ECA 08P 9P04 B3	175,7	121,9	92	54	5,4	3082/2310/1251	714
	FC ECA 08P 9L04 C2	185,4	132,0	92	54	5,4	7286/1226/1251	791
	FC ECA 08P 9P04 C3	199	143,3	92	54	5,4	3782/2310/1251	796
	FC ECA 08P 9L05 B3	217,9	156,6	93	55	6,75	7288/1226/1251	895
	FC ECA 08P 9P06 B3	261,3	185,4	94	56	8,1	4484/2310/1251	1025
	FC ECA 08P 9P06 C4	309,2	226,6	94	56	8,1	5534/2310/1251	1241
	FC ECA 08P 9P08 C2	370,3	264,0	95	57	10,8	7286/2310/1251	1374
	FC ECA 08P 9P10 B3	435,8	312,5	96	58	13,5	7288/2310/1251	1635
	FC ECA 08P 9P12 B4	549,9	385,7	97	59	16,2	8690/2310/1251	2085
	FC ECA 12P 7L01 A1	17,7	12,6	67	29	0,5	1280/1226/1218	165
	FC ECA 12P 9L01 C2	29,5	18,0	72	34	0,5	2030/1226/1251	215
	FC ECA 12P 9L01 D2	35,6	23,5	72	34	0,5	2380/1226/1251	257
	FC ECA 12P 9L01 B2	50,6	32,4	75	37	0,3	3082/1226/1251	332
	FC ECA 12P 7L03 A2	57,5	39,1	72	34	1,5	3284/1226/1218	424
	FC ECA 12P 9L02 C2	65,1	45,9	75	37	1,5	3782/1226/1251	417
	FC ECA 12P 9L03 B1	75,4	54,3	77	39	1,5	4484/1226/1251	481
	FC ECA 12P 9L03 C1	87,9	61,6	77	39	1,5	5534/1226/1251	557
	FC ECA 12P 9L03 C2	95,4	69,7	77	39	1,5	5534/1226/1251	604
12Р (430 об/мин)	FC ECA 12P 9L04 B2			78	40	2		670
		112,6	80,3	79	41		5886/1226/1251 7288/1226/1251	
	FC ECA 12P 9L05 B1	128,7	91,9			2,5		770
	FC ECA 12P 9L05 B2	140,2	100,6	79	41	2,5	7288/1226/1251	832
	FC ECA 12P 9P06 B2	170,9	119,6	42	4,73	_	4484/2310/1251	950
	FC ECA 12P 9P06 C2	190,8	139,5	42	7,65	3	5534/2310/1251	1054
	FC ECA 12P 9P08 C1	234,1	167,1	81	43	4	7286/2310/1251	1250
	FC ECA 12P 9P10 B1	257,4	183,2	82	44	5	7288/2310/1251	1385
	FC ECA 12P 9P10 C1	286,6	207,3	82	44	5	9038/2310/1251	1539
	FC ECA 12P 9P12 B2	341,3	238,7	83	45	6	8690/2310/1251	1785
	FC ECA 16P 7L01 A1	15,3	11,0	57	19	0,28	1280/1226/1218	165
	FC ECA 16P 9L01 C1	23,2	14,3	62	24	0,28	2030/1226/1251	215
	FC ECA 16P 7L02 A1	29	20,0	60	22	0,56	2282/1226/1218	275
	FC ECA 16P 9L02 B1	40,6	27,1	65	27	0,56	3082/1226/1251	332
	FC ECA 16P 9L02 C1	46,3	31,4	65	27	0,56	3782/1226/1251	386
	FC ECA 16P 9L02 D1	51,6	36,4	65	27	0,56	4482/1226/1251	434
	FC ECA 16P 9L03 B1	61,4	43,4	67	29	0,84	4484/1226/1251	481
16D (220 - 67)	FC ECA 16P 9L03 C1	69,1	50,3	67	29	0,84	5534/1226/1251	557
16Р (320 об/мин)	FC ECA 16P 9L04 B1	81,1	57,9	68	30	1,12	5886/1226/1251	620
	FC ECA 16P 9L04 C1	94,3	66,8	68	30	1,12	7286/1226/1251	729
	FC ECA 16P 9L05 B1	100,6	72,4	69	31	1,4	7288/1226/1251	770
	FC ECA 16P 9P06 B1	122,7	86,7	70	32	1,68	4484/2310/1251	875
	FC ECA 16P 9P06 C1	137,9	100,3	70	32	1,68	5534/2310/1251	960
	FC ECA 16P 9P08 B1	161,9	117,6	71	33	2,24	5886/2310/1251	1125
	FC ECA 16P 9P08 C1	188,3	133,6	71	33	2,24	7286/2310/1251	1250
	FC ECA 16P 9P08 D1	205,2	149,2	71	33	2,24	8686/2310/1251	1324
	FC ECA 16P 9P12 B1	245,4	176,3	73	35	3,36	8690/2310/1251	1635

⁽¹⁾ Температура воды: вход/выход 45°C/40°C при концентрации гликоля 34%


⁽²⁾ Уровень звукового давления дБА измерен на расстоянии 10 метров, на уровне крыльчатки вентилятора, в свободном пространстве, приведен для информации. Для расчета уровня звукового давления при других условиях используйте значения звуковой мощности и Lw.


Для подбора оборудования при других условиях негользуте зна техни звуковом мощ нести и ем.


Для подбора оборудования при других расчетных условиях, пожалуйста, обратитесь в представительство Lennox.

Габаритные размеры - FC CHV

	МОДЕЛЬ	ОТВОДИМАЯ М	ОЩНОСТЬ (кВт)		3ВУКОВОГО ЕНИЯ дБА	ПОТРЕБЛЯЕМАЯ МОЩНОСТЬ	РАЗМЕРЫ А/В/С (мм)	МАССА (кг)
		+32°C	+35°C	Lw		(кВт)		
	FC CHV 06P 8L01 A1	47	32,0	83,0	45	2	1350/1150/1450	280
	FC CHV 06P 8L01 A2	51,1	38,6	83,0	45	2	1350/1150/1450	300
	FC CHV 06P 8L02 A1	93,9	67,3	86,0	48	4	2400/1150/1450	490
	FC CHV 06P 8L02 A2	107	77,1	86,0	48	4	2400/1150/1450	540
	FC CHV 06P 8L03 A1	140,8	95,9	88,0	50	6	3450/1150/1450	730
	FC CHV 06P 8L03 A2	160,5	112,7	88,0	50	6	3450/1150/1450	770
	FC CHV 06P 8P04 B1	168,8	114,6	89,0	51	8	2400/2300/1950	720
	FC CHV 06P 8L04 A1	178,3	134,5	89,0	51	8	4500/1150/1450	820
06Р (880 об/мин)	FC CHV 06P 8P04 B2	183,2	138,5	89,0	51	8	2400/2300/1950	940
001 (880 00/MINH)	FC CHV 06P 8L04 A2	202,7		89,0	51	8	4500/1150/1450	850
		-	154,4	-				
	FC CHV 06P 8P06 B1	253,1	171,8	91,0	53	12	3450/2300/1950	1230
	FC CHV 06P 8L05 A2	260,9	180,7	90,0	52	10	5550/1150/1450	1130
	FC CHV 06P 8P06 B2	288,9	198,7	91,0	53	12	3450/2300/1950	1340
	FC CHV 06P 8P08 B2	365,5	277,3	92,0	54	16	4500/2300/1950	1570
	FC CHV 06P 8P10 B1	410,6	299,4	93,0	55	20	5550/2300/1950	1810
	FC CHV 06P 8P12 B1	507,6	345,2	94,0	56	24	6600/2300/1950	2160
	FC CHV 06P 8P12 B2	578,8	397,4	94,0	56	24	6600/2300/1950	2350
	FC CHV 08P 8L01 A1	38,9	27,4	78,0	40	1,25	1350/1150/1450	280
	FC CHV 08P 8L01 A2	43,3	31,4	78,0	40	1,25	1350/1150/1450	300
	FC CHV 08P 8L02 A1	77,9	55,9	81,0	43	2,5	2400/1150/1450	490
	FC CHV 08P 8L02 A2	86,7	62,7	81,0	43	2,5	2400/1150/1450	540
	FC CHV 08P 8L03 A1	116,8	85,3	83,0	45	3,75	3450/1150/1450	730
	FC CHV 08P 8L03 A2	130	95,5	83,0	45	3,75	3450/1150/1450	770
	FC CHV 08P 8P04 B1	140,36	100,6	84,0	46	5	2400/2300/1950	720
	FC CHV 08P 8L04 A1	147,2	112,0	84,0	46	5	4500/1150/1450	820
08Р (660 об/мин)	FC CHV 08P 8P04 B2	147,68	112,2	84,0	46	5	2400/2300/1950	940
	FC CHV 08P 8L04 A2	178,8	125,4	84,0	46	5	4500/1150/1450	850
	FC CHV 08P 8L05 A2	214,2	145,7	85,0	47	6,25	5550/1150/1450	1130
	FC CHV 08P 8P06 B1	210,5	147,1	86,0	48	7,5	3450/2300/1950	1230
				-	48			
	FC CHV 08P 8P06 B2	232,7	163,6	86,0		7,5	3450/2300/1950	1340
	FC CHV 08P 8P08 B2	292,7	224,3	87,0	49	10	4500/2300/1950	1570
	FC CHV 08P 8P10 B1	341,8	250,1	88,0	50	12,5	5550/2300/1950	1810
	FC CHV 08P 8P12 B2	466,4	327,6	89,0	51	15	6600/2300/1950	2350
	FC CHV 12P 8L01 A1	30,1	20,7	67,0	29	0,37	1350/1150/1450	270
	FC CHV 12P 8L02 A1	61	43,4	70,0	32	0,74	2400/1150/1450	470
	FC CHV 12P 8L03 A1	89,8	65,0	72,0	34	1,11	3450/1150/1450	710
	FC CHV 12P 8P04 B1	110,6	79,4	73,0	35	1,48	2400/2300/1950	690
12Р (440 об/мин)	FC CHV 12P 8L04 A1	121,9	86,7	73,0	35	1,48	4500/1150/1450	790
121 (110 00/1/1/1/1	FC CHV 12P 8L05 A1	145,7	109,8	74,0	36	1,85	5550/1150/1450	990
	FC CHV 12P 8P06 B1	155,2	117,5	75,0	37	2,22	3450/2300/1950	1190
	FC CHV 12P 8P08 B1	221,1	154,5	76,0	38	2,96	4500/2300/1950	1390
	FC CHV 12P 8P10 B1	275,3	198,7	77,0	39	3,7	5550/2300/1950	1730
	FC CHV 12P 8P12 B1	321,5	235,5	78,0	40	4,44	6600/2300/1950	2070
	FC CHV 16P 8L01 A1	25,1	17,3	61,0	23	0,2	1350/1150/1450	270
	FC CHV 16P 8L02 A1	51	36,3	63,0	25	0,4	2400/1150/1450	470
	FC CHV 16P 8L03 A1	77,2	55,3	65,0	27	0,6	3450/1150/1450	710
	FC CHV 16P 8P04 B1	91,8	66,1	66,0	28	0,8	2400/2300/1950	690
	FC CHV 16P 8L04 A1	101,9	72,6	66,0	28	0,8	4500/1150/1450	790
16Р (330 об/мин)	FC CHV 16P 8L05 A1	121,3	92,2	67,0	29	1	5550/1150/1450	990
			·					<u> </u>
	FC CHV 16P 8P06 B1	139,2	99,5	68,0	30	1,2	3450/2300/1950	1190
	FC CHV 16P 8P08 B1	183,6	130,7	69,0	31	1,6	4500/2300/1950	1390
	FC CHV 16P 8P10 B1	228,4	165,8	70,0	32	2	5550/2300/1950	1730
	FC CHV 16P 8P12 B1	270,3 концентрации глик	196,6	71,0	33	2,4	6600/2300/1950	2070

⁽¹⁾ Температура воды: вход/выход 45°С/40°С при концентрации гликоля 34%

⁽²⁾ Уровень звукового давления дБА измерен на расстоянии 10 метров, на уровне крыльчатки вентилятора, в свободном пространстве, приведен для информации. Для расчета уровня звукового давления при других условиях используйте значения звуковой мощности и Lw. Для подбора оборудования при других расчетных условиях, пожалуйста, обратитесь в представительство Lennox.

CHV / ECA / NEOSTAR • 21 - 1000 kW

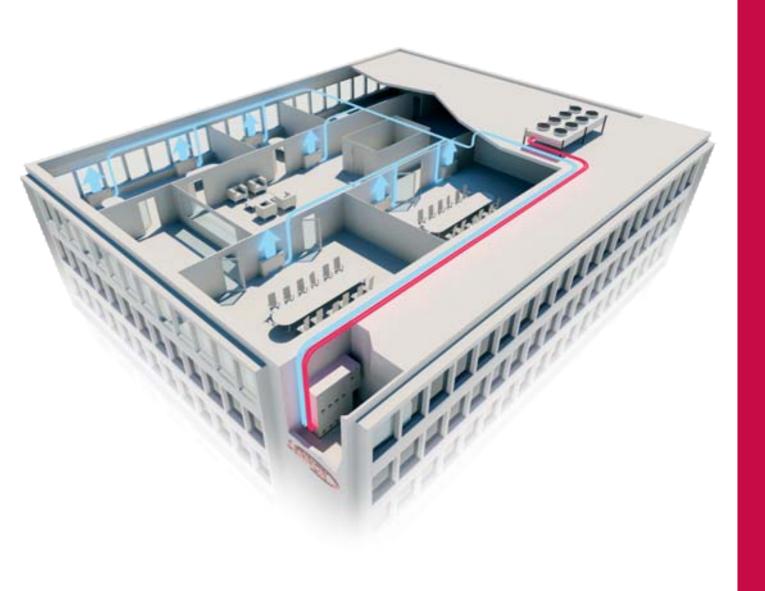
Конденсаторы

Общая информация

Конденсаторы СНУ:

- 72 модели от 32 до 745 кВт
- Вентиляторы диаметром 800 мм, возможны 4 скорости вращения (06Р, 08Р, 12Р и 16Р)
- Малая площадь основания и низкий уровень шума
- Сертификация Eurovent

Конденсаторы ЕСА:


- 389 моделей от 21 до 876 кВт
- Вентиляторы диаметром 762 или 900 мм, возможны 4 скорости вращения (06Р, 08Р, 12Р и 16Р)
- Несколько конфигураций для оптимального подбора
- Сертификация Eurovent

Конденсаторы NEOSTAR:

- Несколько моделей от 1 до 16 вентиляторов
- Более мощные (серия POWER): агрегаты мощностью свыше 1000 кВт
- Более тихие (серия SILENCE): агрегаты с очень низкой скоростью вентиляторов 16P

Для всех моделей поставляются опциональные системы управления различных вариантов:

- Циклический режим работы вентиляторов
- Регулирование посредством напряжения
- Регулирование посредством частоты
- Плавное регулирование с помощью электронно-коммутируемых вентиляторов

Для Вас. Технологии будущего сегодня.

NEOSYSTM

• Инновационное исполнение • Низкошумное исполнение • Пуско-наладка и сервисное обслуживание • Энергоэффективность • Легкость встраивания в архитектурные конструкции

• Расширенное тестирование – Алюминиевый микроканальный теплообменник – Спиральные компрессоры Compliant-scroll® • Вентиляторы с переменным расходом воздуха – Активная система снижения шума • Полный гидравлический модуль – Электрическая панель на пневмопружинах • Высокая эффективность EER до 2.9 • ESEER более 4 • COP до 3.2 – Хладагент R410A • Передовой дизайн – Малая высота агрегатов (менее 2 м)

200-1000 кВт чиллеры воздушного охлаждения

WWW.lennox-neosys.com Качество отличительная

Данная парантия распространеется на компрессоры, ветиляторы, втолобыениям: Гарантия действует при условии соблюдения условий гарантийной политики компании LENNOX и наличия действующего договора на сервисное обслуживание с солячавацией уполномоченной компания LENNOX.

Чиллеры и тепловые

насосы

• Чиллеры/тепловые насосы с конденсатором воздушного охлаждения

ECOLEAN™

9 -	· 175 кВт	74

• Чиллеры/тепловые насосы с конденсатором воздушного охлаждения

NEOSYSTM

84	ŀ
8	34

• Чиллеры/тепловые насосы с конденсатором водяного охлаждения

HYDROLEAN™

20 - 165 κBτ	90

Providing indoor climate comfort

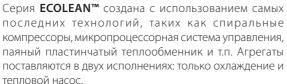
Ecolean™ • 9 → 20 kW

Чиллеры/тепловые насосы с конденсатором воздушного охлаждения

Основные применения

- Небольшие офисы
- Магазины
- Отели
- Промышленные предприятия
- Административные здания
- Небольшие коммерческие и жилые здания

Преимущества оборудования


- Хладагент R407C, спиральные компрессоры
- Агрегаты со встроенным насосом и опциональным аккумулирующим баком
- Электронная система управления
- Поставка со склада
- Сверхкомпактный агрегат для наружной или внутренней установки

Чиллеры и тепловые насосы ECOLEAN™ используются для **комфортного кондиционирования маленьких магазинов и офисов.**

Оригинальная конструкция корпуса имеет следующие преимущества:

- Небольшие габаритные размеры
- Оптимальный доступ к различным компонентам
- Гидравлические модули встроены в корпус агрегата без изменения размеров
- Высоконапорный вентилятор конденсатора с располагаемым давлением (исполнение FP - до 200 Па)

Основные компоненты

- Рама из оцинкованной стали с отверстиями для транспортировки вилочным погрузчиком
- Окрашенный корпус из оцинкованного стального листа
- Цвет окраски RAL 9002
- Герметичный спиральный компрессор
- Хладагент R407C
- Теплоизолированный паяный пластинчатый испаритель из нержавеющей стали марки 316
- Осевой вентилятор конденсатора располагаемое давление зависит от исполнения
- Отсек с аппаратурой управления и защиты соответствует требованиям стандарта EN 60 204-1
- Один холодильный контур
- Фильтр-осушитель, соленоидный вентиль, терморегулирующий вентиль, реле высокого и низкого давления, жидкостной ресивер и 4-ходовой вентиль (только для тепловых насосов)
- CLIMATIC™ микропроцессорный контроллер с лисплеем
- Комплект для круглогодичной эксплуатации входит в стандартную комплектацию всех моделей
- Резьбовые патрубки для подсоединения водяных труб

Расширенный микропроцессорный

- CLIMATIC™ микропроцессорный контроллер с дисплеем
- Таймеры:
 - Выравнивание времени работы компрессоров
 - Предотвращение работы компрессоров короткими циклами
- Отображение на дисплее температуры воды на входе/выходе
- Сохранение в памяти и отображение на дисплее аварийных кодов для каждого компонента
- Формирование сигнала общей аварии
- Дистанционное включение и отключение
- Защита от замораживания
- Управление циклами оттаивания (только для тепловых насосов)
- Управление гидравлическим модулем (насос, предохранительные

контроллер

устройства и т.п.)

- Цифровой дисплей и функциональные кнопки
- Пульт дистанционного управления (до 100 м)
 - Отображение следующих параметров: Уставка температуры в режиме охлаждения и нагрева Температура воды на входе/выходе

Температура оттаивания (только для тепловых насосов)

Аварийные коды

Режимы работы

• Управление агрегатом:

Включение/отключение

Режимы работы нагрев/охлаждение

ECOLEAN ™ FLASH

Поставка со склада!

Агрегаты на складе - Типоразмеры с 0091 до 0211 (9 - 19 кВт)

- Агрегаты малой мощности только охлаждение и тепловой насос
- Встроенный гидравлический модуль (Насос и аккумулирующий бак)
- Главный выключатель
- Реле контроля фаз
- Нагреватель для защиты испарителя от замораживания

·						
ECOLEAN™ STD	EAC/EAR	91	111	151	191	211
Режим охлаждения						
Холодопроизводительность (1)	кВт	8,84	11,2	13,4	17,4	19,2
Коэффициент энергоэффективности EER ⁽³⁾		2,86	2,96	2,72	2,74	2,72
Коэффициент сезонной энергоэффективности ESEER ⁽³⁾		3,16	3,22	3,17	3,21	3,30
Режим нагрева						
Теплопроизводительность ⁽²⁾	кВт	8,96	11	13,1	17,4	19,8
Коэффициент энергоэффективности СОР		2,66	2,47	2,48	2,55	2,56
Электрические характеристики						
Электропитание	В/фаз/Гц			400/3/50		
Холодильный контур						
Количествоконтуров	ШТ.			1		
Компрессор	ШТ.			1		
Испаритель	Тип		Паян	ый пластинч	чатый	
Количество ступеней мощности	ШТ.			1		
Масса хладагента в одном контуре (только охлаждение/тепловой насос)	КГ	3/3,1	3/3,1	3,4/3,9	4/5	5,5/6,5
Гидравлическое сопротивление						
Номинальный расход воды	м3/ч	1,51	1,91	2,3	2,99	3,29
Гидравлическое сопротивление без водяного фильтра	кПа	25	39	29	47	41
Гидравлическое сопротивление при наличии водяного фильтра (опция)	кПа	49	66	58	81	78
Гидравлические соединения						
Тип			Вну	тренняя рез	вьба	
Диаметр	дюйм			1"		
Акустические характеристики						
Общий уровень звуковой мощности ⁽³⁾	дБА	73	75	76	76	79

Технические характеристики - Высоконапорное исполнение

ECOLEAN™ FP	EAC/EAR	91	111	151	191	211
Режим охлаждения						
Холодопроизводительность (1)	кВт	8,8	11,1	13,3	17,3	19,1
Коэффициент энергоэффективности EER ⁽³⁾		2,3	2,1	2,0	2,2	2,2
Режим нагрева						
Теплопроизводительность ⁽²⁾	кВт	9	11,1	13,1	17,5	19,8
Коэффициент энергоэффективности СОР		2,3	1,9	2	2,2	2,3
Электрические характеристики						
Электропитание	В/фаз/Гц			400/3/50		
Холодильный контур	<u>'</u>					
Количество контуров	ШТ.			1		
Компрессор	ШТ.			1		
Испаритель	Тип		Паян	ый пластинч	чатый	
Количество ступеней мощности	ШТ.			1		
Масса хладагента в одном контуре (только охлаждение/тепловой насос)	KГ	3/3,1	3/3,1	3,4/3,9	4/5	5,5/6,5
Гидравлическое сопротивление						
Номинальный расход воды	м3/ч	1,51	1,91	2,3	2,98	3,29
Гидравлическое сопротивление без водяного фильтра	кПа	24,8	38,9	28,5	46,5	41
Гидравлическое сопротивление при наличии водяного фильтра (опция)	кПа	49	66	58	81	78
Гидравлические соединения						
Тип			Вну	тренняя рез	вьба	
Диаметр	дюйм			1»		
Акустические характеристики	'					
Общий уровень звуковой мощности ⁽³⁾	дБА	79	82	82	82	83
	(2) Температу	ра волы: 45°C	- Температур	ра наружног	о возлуха: 7

⁽¹⁾ Температура воды: 12 °C/ 7 °С - Температура воздуха: 35°С

⁽³⁾ При условиях Eurovent

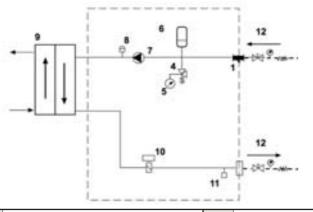
⁽²⁾ Температура воды: 45°С - Температура наружного воздуха: 7°С

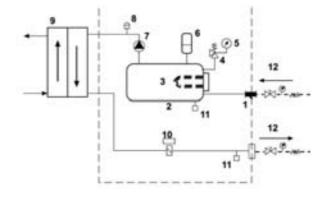
Чиллеры ECOLEAN™ участвуют в программе LCP сертификации Eurovent (www.eurovent-certification.com)

Предельные эксплуатационные характеристики

ECOLEAN™	EAC/EAR	91	111	151	191	211
Предельные эксплуатационные характеристики (только охлаж	кдение / тепл	овой насс	oc)			
Максимальная температура наружного воздуха	°⊂	46/23				
Минимальная температура наружного воздуха	°C	0 °C	C (-15 °C - o⊓	іция)/-10°C	(-15 °С - оп	ция)
Максимальная температура воды на входе	°C			17/43		
Минимальная температура воды на выходе	°C		+5°Си-	10°C (опция	я)/+20°C	

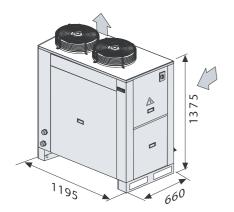
Технические характеристики - Встроенный гидравлический модуль

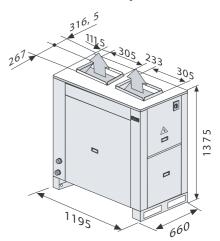

ECOLEAN™ HY / HN	EAC/EAR	91	111	151	191	211
Насос						
Номинальный расход воды	м3/ч	1,51	2,98	3,29		
Располагаемое статическое давление	кПа	196	161	152	140	126
Электропитание	В/фаз/Гц		230/1/50		400/	3/50
Потребляемая мощность	кВт		0,49 0,72			
Максимальный ток	А		1,4			
Объем расширительного бака	Л	5				
Макс. давление - Расширительный бак	Бар			4		
Масса	КГ		1	4		15
Аккумулирующий бак ⁽¹⁾						
Объем	Л			50		
Масса	КГ	30				
Нагреватель защиты от замораживания (опция)	кВт	2,25				
Дополнительный электрический нагреватель (опция только для тепловых насосов)	кВт			6		


⁽¹⁾ Только для исполнения "Hydronic"

Принципиальная схема - Встроенный гидравлический модуль

Модуль «Hydronic» (HN)




1	Водяной фильтр (съемный)	5	Манометр	9	Пластинчатый теплообменник
2	Аккумулирующий бак	6	Расширительный бак	10	Реле протока
3	Погружной электронагреватель в баке (опция)	7	Насос	11	Сливной вентиль
4	Предохранительный клапан	8	Воздуховыпускной клапан	12	Запорные водяные вентили (опция)

Габаритные размеры и масса

Стандартное исполнение

Высоконапорное исполнение

ECOLEAN™ STD	EAC/EAR	91	111	151	191	211
Стандартное исполнение						
Эксплуатационная масса ⁽¹⁾	КГ	150	158	172	185	250
Высоконапорное исполнение						
Эксплуатационная масса ⁽¹⁾	КГ	159	176	190	204	268
Дополнительная масса						
модуль «HYDRAULIC» без воды ⁽²⁾	КГ		15			
модуль «HYDRONIC» без воды ⁽²⁾	КГ		4	4		45

- (1) Без модуля «HYDRAULIC» или «HYDRONIC»
- (2) Данное значение массы следует прибавить к массе соответствующего агрегата. Внимание! При определении полной массы следует учитывать массу отдельных компонентов.

Дополнительные принадлежности и функции

- Электрический нагреватель в аккумулирующем баке (модели с электропитанием 230В - 400В) (2)
- Эпоксидное покрытие ребер конденсатора
- Главный выключатель
- Плавный пуск (1)
- Реле контроля фаз
- Защита испарителя от замораживания
- Защита бака от замораживания (модели с электропитанием 230 B-400 B)
- Реле протока ⁽³⁾
- Водяной фильтр (устанавливается на месте) (3)
- Защитная решетка теплообменника
- Комплект для эксплуатации при низкой температуре наружного воздуха (до -15°C) модели только охлаждение
- Комплект для эксплуатации при низкой температуре наружного воздуха (до -15°С) ⁽²⁾
- Байпас горячего газа
- Комплект для низкой температуры воды (температура воды на выходе: 0°C / -5°C / -10°C)
- Звукоизоляция компрессора

- Резиновые виброизоляторы (устанавливаются на месте)
- Манометры высокого и низкого давления
- Запорные вентили (устанавливаются на месте)
- Интерфейс mod-Bus KP06 для подключения к BMS (макс. 8 агрегатов, устанавливается на месте)
- Динамическая уставка
- Реле общей аварии
- Интерфейс для интерфейса Mod-Bus (для каждого агрегата, устанавливается на месте)
- Дистанционный пульт управления (устанавливается на месте)

⁽¹⁾ Только для моделей с электропитанием 400 В / 3 ф / 50 Гц

⁽²⁾ Только для тепловых насосов

⁽³⁾ Стандартная комплектация для исполнений "Hydraulic" и "Hydronic"

Ecolean™ • 20 → 175 kW

Чиллеры/тепловые насосы с конденсатором воздушного охлаждения

Основные применения

- Офисы
- Отели
- Больницы
- Промышленные предприятия
- Административные здания
- Коммерческие и жилые здания


Преимущества оборудования

- Очень высокая эффективность благодаря хладагенту R410A
- Сверхнизкошумная работа
- Хладагент R410A, спиральные компрессоры
- Расширенный микропроцессорный контроллер Climatic
- Агрегаты со встроенным насосом и опциональным аккумулирующим баком
- Сверхкомпактный агрегат для наружной или внутренней установки

Серия **ECOLEAN™** создана с использованием самых последних технологий, таких как спиральные компрессоры, микропроцессорная система управления, паяный пластинчатый теплообменник и т.п. Агрегаты поставляются в двух исполнениях: только охлаждение и тепловой насос.

- Оптимальный доступ к различным компонентам
- Гидравлические модули встроены в корпус агрегата без изменения размеров
- Высоконапорный вентилятор конденсатора с располагаемым давлением (исполнение FP до 250 Па и более, в зависимости от типоразмера)

Основные компоненты

- Рама из оцинкованной стали с отверстиями для транспортировки вилочным погрузчиком
- Окрашенный корпус из оцинкованного стального листа
- Цвет окраски RAL 9002
- Герметичный спиральный компрессор
- Экологически безопасный хладагент R410A
- Теплоизолированный паяный пластинчатый испаритель из нержавеющей стали марки 316
- Осевой вентилятор конденсатора располагаемое давление зависит от исполнения
- Отсек с аппаратурой управления и защиты соответствует требованиям стандарта EN 60 204-1
- 1 или 2 (в зависимости от типоразмера) независимых холодильных контура
- Фильтр-осушитель, соленоидный вентиль, терморегулирующий вентиль, реле высокого и низкого давления, жидкостной ресивер и 4-ходовой вентиль (только для тепловых насосов)
- CLIMATIC™ микропроцессорный контроллер с дисплеем
- Комплект для круглогодичной эксплуатации входит в стандартную комплектацию всех моделей
- Резьбовые патрубки для подсоединения водяных труб
- Главный выключатель
- Реле протока
- Водяной фильтр
- Динамическая уставка

Расширенный микропроцессорный контроллер

- Микропроцессорная система управления
- Таймеры:
 - Выравнивание времени работы компрессоров
 - Предотвращение работы компрессоров короткими циклами
- Отображение на дисплее температуры воды на входе/выходе
- Сохранение в памяти и отображение на дисплее аварийных кодов для каждого компонента
- Формирование сигнала общей аварии
- Дистанционное включение и отключение
- Защита от замораживания
- Управление циклами оттаивания (только для тепловых насосов)
- Управление гидравлическим модулем (насос, предохранительные устройства и т.п.)

- Цифровой дисплей и функциональные кнопки
- Пульт дистанционного управления (до 100 м)
- Отображение следующих параметров:

Уставка температуры в режиме охлаждения и нагрева

Температура воды на входе/выходе

Температура оттаивания (только для тепловых насосов) Аварийные коды

Режимы работы

Управление агрегатом:

Включение/отключение

Режимы работы нагрев/охлаждение

Технические характеристики - Стандартное исполнение Типоразмеры 251 - 812

ECOLEAN™ STD	EAC/EAR	251	291	351	431	472	552	672	812
Режим охлаждения									
Холодопроизводительность ⁽¹⁾	кВт	22,1	25,9	32	37,6	44,1	50,7	63,4	75,4
Коэффициент энергоэффективности EER ⁽³⁾		2;9	2;85	2;86	2;81	2,9	2,79	2,83	2,82
Коэффициент сезонной энергоэффективности ESEER		3,27	3,26	3,26	3,18	3,91	3,87	3,86	3,96
Режим нагрева									
Теплопроизводительность ⁽²⁾	кВт	23,6	27,6	33,6	37,8	47,8	54,7	68	75,7
Коэффициент энергоэффективности СОР		3	3	3	2,91	3	2,94	3	2,92
Электрические характеристики									
Электропитание В/фаз/Гц					400/	′3/50			
Холодильный контур									
Хладагент	Тип				R4	10A			
Количество контуров (только охлаждение/тепловой насос)	ШТ.	. 1 1/2							
Компрессор	ШТ.			1				2	
Испаритель	Тип			Пая	ный пла	астинча	тый		
Количество ступеней мощности	ШТ.			1				2	
Масса хладагента в одном контуре (только охлаждение/тепловой насос)	КГ	5,5/ 5,8	6,11/ 6,5	8/ 8,7	09/ 10	11/ 11,4	12,2/ 12,7	16,1/ 16,8	18,5/ 19,3
Гидравлическое сопротивление									
Номинальный расход воды	м3/ч	3,8	4,45	5,5	6,47	7,59	8,72	10,9	12,98
Гидравлическое сопротивление без водяного фильтра	кПа	51	54	30	34	32	34	40	47
Гидравлическое сопротивление при наличии водяного фильтра (опция)	кПа	69	78	60	73	50	57	71	87
Гидравлические соединения									
Тип		Внутренняя резьба							
Диаметр	дюйм		1 1	/2"			2	<u>)</u> "	
Акустические характеристики									
Общий уровень звуковой мощности ⁽³⁾	дБА	78	81	80	81	81	84	83	84

Технические характеристики - Стандартное исполнение - Типоразмеры 1003 - 1804

ECOLEAN™ STD	EAC/EAR	1003	1103	1203	1303	1403	1604	1804
Режим охлаждения								
Холодопроизводительность ⁽¹⁾	кВт	88,2	102	112	126	139	149	174
Коэффициент энергоэффективности EER ⁽³⁾		2,83	2,9	2,79	2,86	2,87	2,76	2,9
Коэффициент сезонной энергоэффективности ESEER		4,19	3,97	3,83	3,87	3,98	4,02	4,06
Режим нагрева								
Теплопроизводительность ⁽²⁾	кВт	95	108	118	130	143	159	180
Коэффициент энергоэффективности СОР		3,05	3	3	2,92	2,97	3	2,95
Электрические характеристики								
Электропитание В/фаз/Г					400/3/50)		
Холодильный контур								
Хладагент	Тип	R410A						
Количество контуров	ШТ.				2			
Компрессор	ШТ.			3				4
Испаритель	Тип			Паяныі	й пласти	нчатый		
Количество ступеней мощности	шт.			3				4
Масса хладагента в одном контуре (только охлаждение/тепловой насос)	КГ	21,8/ 22,7	25,3/ 26,3	26,7/ 27,9	29,7/ 31	33,7/ 35,1	36,2/ 37,7	42,1/ 43,9
Гидравлическое сопротивление								
Номинальный расход воды	м3/ч	15,17	17,61	19,23	21,62	23,87	25,66	29,86
Гидравлическое сопротивление без водяного фильтра	кПа	32	38	43	48	53	44	52
Гидравлическое сопротивление при наличии водяного фильтра (опция)	кПа	41	50	61	70	80	62	76
Гидравлические соединения								
Тип				Внутр	енняя р	езьба		
Диаметр	дюйм			2 1/2"			3	3"
Акустические характеристики								
Общий уровень звуковой мощности ⁽³⁾	дБА	85	87	88	90	90	89	89

⁽¹⁾ Температура воды: 12 °C/ 7 °С - Температура воздуха: 35°С

⁽³⁾ При условиях Eurovent

⁽²⁾ Температура воды: 45°С - Температура наружного воздуха: 7°С

Чиллеры ECOLEAN™ участвуют в программе LCP сертификации Eurovent (www.eurovent-certification.com)

Технические характеристики - Высоконапорное исполнение Типоразмеры 251 - 812

ECOLEAN™ FP1	EAC/EAR	251	291	351	431	472	552	672	812	
Режим охлаждения										
Холодопроизводительность ⁽¹⁾	кВт	22,1	25,9	32	37,6	44,1	50,7	63,4	75,4	
Коэффициент энергоэффективности EER		2,56	2,6	2,66	2,65	2,56	2,55	2,64	2,66	
Режим нагрева										
Теплопроизводительность ⁽²⁾	кВт	23,6	27,6	33,6	37,8	47,8	54,7	68	75,7	
Коэффициент энергоэффективности СОР		2,66	2,74	2,80	2,74	2,66	2,7	2,8	2,75	
Электрические характеристики										
Электропитание	В/фаз/Гц				400/	/3/50				
Холодильный контур										
Хладагент	Тип				R4	10A				
Количество контуров (только охлаждение/тепловой насос)	шт.	1 1/2								
Компрессор	ШТ.			1		2				
Испаритель	Тип			Пая	ный пл	астинча	этый			
Количество ступеней мощности	ШТ.		-	1						
Масса хладагента в одном контуре (только охлаждение/тепловой насос)	КГ	5,5/ 5,8	6,11/ 6,5	8/ 8,7	9/ 10	11/ 11,4	12,2/ 12,7	16,1/ 16,8	18,5/ 19,3	
Гидравлическое сопротивление					•	•	•		•	
Номинальный расход воды	м3/ч	3,8	4,45	5,5	6,47	7,59	8,72	10,9	12,98	
Гидравлическое сопротивление без водяного фильтра	кПа	51	54	30	34	32	34	40	47	
Гидравлическое сопротивлениепри наличии водяного фильтра (опция)	кПа	69	78	60	73	50	57	71	87	
Гидравлические соединения										
Тип		Внутренняя резьба								
Диаметр	дюйм		1 1	/2"			2	2"		
Акустические характеристики										
Общий уровень звуковой мощности ⁽³⁾	дБА	86	86	86	86	89	89	89	89	

Технические характеристики - Высоконапорное исполнение - Типоразмеры 1003 - 1804

ECOLEAN™ FP1 / FP2	EAC/EAR	1003	1103	1203	1303	1403	1604	1804
Режим охлаждения								
Холодопроизводительность (1)	кВт	88,2	102	112	126	139	149	174
Коэффициент энергоэффективности EER		2,59	2,75	2,66	2,8	2,82	2,71	2,64
Режим нагрева								
Теплопроизводительность ⁽²⁾	кВт	95	107,8	118,2	130,4	142,5	158,7	179,6
Коэффициент энергоэффективности СОР		2,79	2,85	2,86	2,86	2,91	2,94	2,34
Электрические характеристики								
Электропитание	В/фаз/Гц				400/3/50)		
Холодильный контур								
Хладагент	Тип				R410A			
Количество контуров (только охлаждение/тепловой насос)	ШТ.				2			
СКомпрессор	ШТ.			3				4
Испаритель	Тип			Паяныі	й пласти	нчатый		
Количество ступеней мощности	ШТ.			3				4
Масса хладагента в одном контуре (только охлаждение/тепловой	КГ	21,8/	25,3/	26,7/	29,7/	33,7/	36,2/	42,1/
Hacoc)		22,7	26,3	27,9	31	35,1	37,7	43,9
Гидравлическое сопротивление	2/	4547	17.01	10.00	04.00	00.07	05.00	00.00
Номинальный расход воды	м3/ч	15,17	17,61	19,23	21,62	23,87	25,66	29,86
Гидравлическое сопротивление без водяного фильтра	кПа	32	38	43	48	53	44	52
Гидравлическое сопротивление при наличии водяного фильтра (опция)	кПа	41	50	61	70	80	62	76
Гидравлические соединения								
Тип	Внутренняя резьба							
Диаметр лдюй				2 1/2"			3	3"
Акустические характеристики								
Общий уровень звуковой мощности ⁽³⁾	дБА	88	88	89	90	90	88	91

⁽¹⁾ Температура воды: 12 °С/ 7 °С - Температура воздуха: 35°С

⁽³⁾ При условиях Eurovent

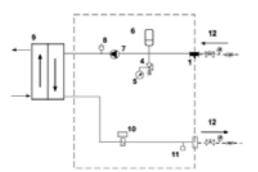
⁽²⁾ Температура воды: 45°С - Температура наружного воздуха: 7°С

Чиллеры ECOLEAN™ участвуют в программе LCP сертификации Eurovent (www.eurovent-certification.com)

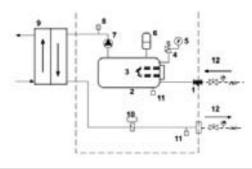
Предельные эксплуатационные характеристики

ECOLEAN™ & ECOLEAN™ FP1	EAC/ EAR	ВСЕ ТИПОРАЗМЕРЫ
Предельные эксплуатационные характеристики (только охлаждение /	геплово	ой насос)
Макс. температура наружного воздуха – Стандартное и высоконапорное исполнение FP1	°C	48/23
Минимальная температура наружного воздуха	۰٫	-15°С в режиме охлаждения ∕
плинимальная температура наружного воздуха		-12°C в режиме нагрева
Макс. температура воды на входе – Стандартное исполнение	°C	22/43
Макс. температура воды на входе – Высоконапорное исполнение	°C	19/43
Мин. температура воды на выходе – Стандартное исполнение	°C	5/20
Мин. температура воды на выходе — Высоконапорное исполнение	°€	+5 °С и -10 °С (опция)/+20 °С

Технические характеристики - Встроенный гидравлический модуль


						.,			
ECOLEAN™ HY / HN	EAC/EAR	251	291	351	431	472	552	672	812
Насос									
Номинальный расход воды	м3/ч	3,8	4,45	5,5	6,62	7,59	8,72	10,9	12,98
Располагаемое статическое давление	кПа	131	106	150	96	128	115	165	107
Электропитание	В/фаз/Гц				400/	′3/50			
Потребляемая мощность	кВт	0,	72	1,1	1,1	1,	17	1,	55
Объем расширительного бака	Л		1	2			1	8	
Макс. давление - Расширительный бак	Бар				4	4			
Macca	КГ	1	6	1	7	2	3	2	24
Аккумулирующий бак ⁽¹⁾									
Объем	Л		7	5			10	00	
Macca	КГ		3	1		3	2	3	3
Нагреватель защиты от замораживания (опция)	кВт				2,	25			
Дополнительный электрический нагреватель (опция только для тепловых насосов)			(9			1	2	

ECOLEAN™ HY / HN	EAC/EAR	1003	1103	1203	1303	1403	1604	1804
Hacoc								
Номинальный расход воды	м3/ч	15,17	17,61	19,23	21,62	23,87	25,66	29,93
Располагаемое статическое давление	кПа	189	172	151	131	115	115	137
Электропитание	В/фаз/Гц				400/3/50			
Потребляемая мощность	кВт	1,55	1,6	1,7	1,8	2,	93	3,7
Объем расширительного бака	Л			35			5	iO
Макс. давление - Расширительный бак	Бар				4			
Macca	КГ		2	26		29	27	45
Аккумулирующий бак ⁽¹⁾								
Объем	Л			240			3	50
Macca	КГ	кг 55 70					0	
Нагреватель защиты от замораживания (опция)	кВт	кВт 6 8,25					25	
Дополнительный электрический нагреватель (опция только для тепловых насосов)	кВт			24			3	6

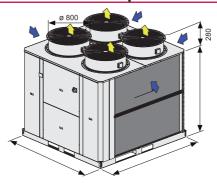

⁽¹⁾ Только для исполнения "Hydronic"

Принципиальная схема - Встроенный гидравлический модуль

Модуль «Hydraulic» (HY)

Модуль «Hydronic» (HN)

1	Водяной фильтр (съемный)	5	Манометр	9	Пластинчатый теплообменник
2	Аккумулирующий бак	6	Расширительный бак	10	Реле протока
3	Погружной электронагреватель в баке (опция)	7	Насос	11	Сливной вентиль
4	Предохранительный клапан	8	Воздуховыпускной клапан	12	Запорные водяные вентили (опция)

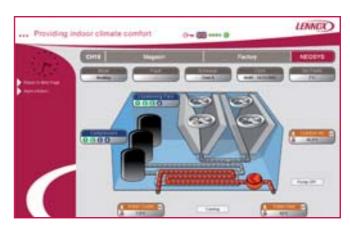

Габаритные размеры и масса - Стандартное исполнение

ECOLEAN™ STD	EAC/EAR	251	291	351	431	472	552	672	812
A	MM	1195	1195	1195	1195	1960	1960	1960	1960
В	MM	980	980	980	980	1195	1195	1195	1195
С	MM	1375	1375	1375	1375	1375	1375	1375	1375
Эксплуатационная масса (1)	КГ	243	251	271	300	480	492	534	578
Дополнительная масса									
модуль «HYDRAULIC» без воды ⁽²⁾	КГ	1	6	1	7	2	:3	2	4
модуль «HYDRONIC» без воды ⁽²⁾	КГ	4	17	4	8	5	5	5	7

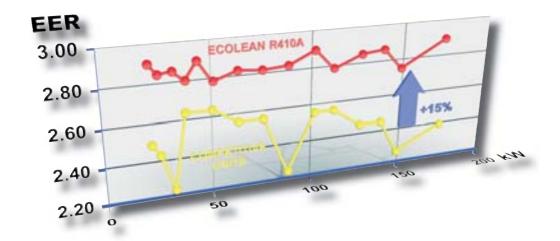
ECOLEAN™ STD	EAC/EAR	1003	1103	1203	1303	1403	1604	1804
A	MM	2250	2250	2250	2250	2250	2250	2250
В	MM	1420	1420	1420	1420	1420	2300	2300
С	MM	1875	1875	1875	1875	1875	1975	1975
Эксплуатационная масса (1)	КГ	663	831	964	1016	1045	1167	1503
Дополнительная масса								
модуль «HYDRAULIC» без воды ⁽²⁾	КГ		2	6		29	27	45
Модуль «HYDRONIC» без воды ⁽²⁾	КГ	кг 81 84 97					97	115

Габаритные размеры и масса - Высоконапорное исполнение

ECOLEAN™ FP1	EAC/EAR	251	291	351	431	472	552	672	812
A	MM	1195	1195	1195	1195	1960	1960	1960	1960
В	MM	980	980	980	980	1195	1195	1195	1195
С	MM	1375	1375	1375	1375	1375	1375	1375	1375
Эксплуатационная масса (1)	КГ	258	266	286	315	510	522	564	608


ECOLEAN™ FP1	EAC/EAR	1003	1103	1203	1303	1403	1604	1804
A	ММ	2250	2250	2250	2250	2250	2250	2250
В	ММ	1420	1420	1420	1420	1420	2300	2300
С	MM	1875	1875	1875	1875	1875	1975	1975
Эксплуатационная масса ⁽¹⁾	КГ	703	871	1004	1056	1085	1207	1583

⁽¹⁾Без модуля «HYDRAULIC» или «HYDRONIC»


⁽²⁾Данное значение массы следует прибавить к массе соответствующего агрегата. Внимание! При определении полной массы следует учитывать массу отдельных компонентов – Значения также подходят для высоконапорного исполнения

Дополнительные принадлежности и функции

- Электрический нагреватель в аккумулирующем баке (модели с электропитанием 230В 400В)
- Воздухозаборный пленум (устанавливается на месте)
- Эпоксидное покрытие ребер конденсатора
- Плавный пуск
- Реле контроля фаз
- Защита испарителя от замораживания
- Защита бака от замораживания (модели с электропитанием 230 B-400 B)
- Защитная решетка теплообменника
- Сдвоенный насос
- Комплект для низкой температуры воды (-10°C)
- Звукоизоляция компрессора
- Резиновые виброизоляторы (устанавливаются на месте)
- Манометры высокого и низкого давления
- Интерфейс Mod-Bus
- Реле общей аварии
- Дистанционный пульт управления (устанавливается на месте)
- Система мониторинга Adalink™

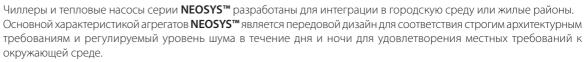
Система мониторинга ADALINK™

NEOSYS™ • 200 → 1000 kW

Чиллеры/тепловые насосы с конденсатором воздушного охлаждения

Основные применения

- Офисы
- Отели
- Больницы
- Промышленные предприятия
- Административные здания
- Средние и большие коммерческие здания


Преимущества оборудования

- Очень высокая эффективность благодаря хладагенту R410A
- Сверхнизкошумная работа
- Хладагент R410A, спиральные компрессоры
- Вентиляторы с инверторным управлением
- Расширенный микропроцессорный контроллер CLIMATIC™
- Агрегаты со встроенными насосами и теплоутилизацией (опция)
- 3 года гарантии*.

• NEOSYS™ NAC: Агрегаты только охлаждение – встроенный гидравлический модуль, частичная теплоутилизация (опция) Холодопроизводительность: от 200 до 1000 кВт

• NEOSYS™ NAH: Агрегаты тепловой насос – встроенный гидравлический модуль, частичная теплоутилизация (опция) Теплопроизводительность: от 200 до 350 кВт

Основные компоненты

- Корпус изготовлен из оцинкованной листовой стали, окрашенный белой RAL 9002 порошковой полиэфирной краской
- Плоский верх, эстетичные защитные решетки, малая высота агрегата (< 2 м)
- Низкошумные спиральные компрессоры установленные в звукоизолированном корпусе для снижения уровня шума
- Пластинчатый теплообменник расположен внутри корпуса для защиты теплоизоляции от воздействия окружающей среды
- Алюминиевый микроканальный теплообменник с улучшенной коррозионной стойкостью (агрегаты только охлаждение)
- Теплообменник из медных трубок с алюминиевым оребрением (агрегаты тепловой насос)
- Вентиляторы с внешним ротором и инверторным управление, высокопроизводительные алюминиевые лопасти последнего поколения.
- Электрический щиток, электропитание 400В, 50 Гц, 3 фазы (без нейтрали), одно место подвода питания
- Главный выключатель установлен на лицевой панели
- Пульт управления DC50™ установлен на лицевой панели. Отображает значения высокого и низкого давлений.
- Система управления, основанная на микропроцессорном контроллере Climatic™
- Агрегат построен в соответствии с европейскими нормами и стандартами, характеристики и параметры подтверждены сертификацией Eurovent

Расширенный микропроцессорный контроллер Climatic™

Микропроцессорный контроллер Climatic™ обеспечивает следующие функции:

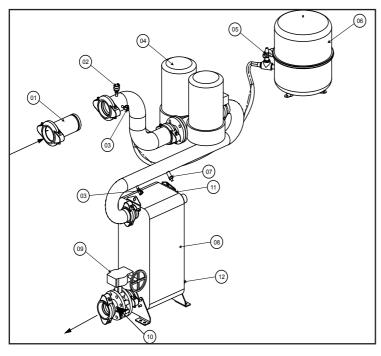
- РІ регулирование температуры воды с выравниванием времени наработки компрессоров
- Автоматическое переключение режимов нагрев/охлаждение в зависимости от температуры наружного воздуха
- Изменение уставки температуры воды в зависимости от температуры наружного воздуха
- Cucrema Active Acoustic Attenuation System™ автоматически регулирует расход воздуха для соответствия требованиям по уровню шума днем и ночью, и одновременно обеспечивает производительность, необходимую в соответствии с тепловой нагрузкой здания
- Работа агрегата без аккумулирующего бака
- Динамическое оттаивание уменьшает количество и продолжительность циклов оттайки в зимний период
- Сухие контакты: дистанционное включение/отключение, сброс аварий для перезапуска агрегата и аварийная сигнализация, контакты для конфигурации пользователем
- Управление ведущий/ведомый или каскадное управление двумя агрегатами с выравниванием времени наработки и автоматическим переключением в случае аварии
- Сетевые интерфейсы ModBUS°, LonWorks°, BacNET° (опция)

Данная гарантия распространяется на компрессоры, вентиляторы, теплообменники. Гарантия действует при условии соблюдения условий гарантийной политики компании LENNOX и наличия действующего договора на сервисное обслуживание с организацией уполномоченной компанией LENNOX.

NEOSYS™	NAC	200	230	270	300	340	380	420	480
Режим охлаждения									
Холодопроизводительность ⁽¹⁾	кВт	208	235	273	307	346	387	432	473
Коэффициент энергоэффективности EER ⁽²⁾		2,94	2,76	2,60	2,90	2,80	2,61	2,87	2,75
Электрические характеристики									
Электропитание	В/фаз/Гц	- ц 400/3/50							
Холодильный контур									
Количество контуров	ШТ.				:	2			
Компрессор	ШТ.		4	4			5		6
Испаритель	Тип	Пластинчатый теплообменник из нержавеющей стали марки AISI 316 с медными сварными					сварными сое	единениями	
Количество ступеней мощности			6		4		5		6
СКонденсатор	Тип		Микр	оканальн	ый алюмі	иниевый -	геплообм	енник	
Гидравлическое сопротивление									
Гидравлическое сопротивление ⁽¹⁾	кПа	30,3	38,7	39,6	49,9	47,9	40,8	41,4	49,5
Гидравлические соединения									
Тип					Vict	aulic			
Диаметр	дюйм			1"			Ę	5"	
Акустические характеристики									
Общий уровень звуковой мощности (1)	дБА	89	89	90	91	91	91	93	93
Уровень звукового давления на расстоянии 10 м	дБА	57	57	58	59	59	59	61	61
Предельные эксплуатационные характеристики	i								
Мин. температура воды на выходе	°C				;	5			
Макс. температура воды на входе	°C	°C 20							
Мин. разность температур воды на входе/выходе	°C				;	3			
Макс. разность температур воды на входе/выходе	°C	℃ 8							
Мин. температура наружного воздуха	°C	°C 6							
Макс. температура наружного воздуха	°C	46	46	46	46	46	43	46	46

NEOSYS	NAC	540	600	640	680	760	840	960	1080
Режим охлаждения									
Холодопроизводительность (1)	кВт	531	605	627	692	775	864	946	1062
Коэффициент энергоэффективности EER ⁽²⁾		2,64	2,76	2,77	2,80	2,61	2,87	2,75	2,64
Электрические характеристики									
Электропитание	В/фаз/Гц		400/3/50			2	x 400/3/5	50	
Холодильный контур									
Количество контуров	ШТ.		2				4		
Компрессор	ШТ.		6		1	0		12	
Испаритель	Тип	Пластинчат	гый теплообме	енник из нерж	авеющей стал	и марки AISI 3	16 с медными	сварными сое	единениями
Количество ступеней мощности			6		1	0		12	
Конденсатор	Тип	Микроканальный алюминиевый теплообме					енник		
Гидравлическое сопротивление									
Гидравлическое сопротивление ⁽¹⁾	кПа	56,8	59	58,4	57	51,3	56	66	71
Гидравлические соединения									
Тип					Vict	aulic			
Диаметр	дюйм		6"				8"		
Акустические характеристики									
Общий уровень звуковой мощности ⁽¹⁾	дБА	93	94	94	94	94	96	96	96
Уровень звукового давления на расстоянии 10 м	дБА	61	62	62	62	62	64	64	64
Предельные эксплуатационные характеристики									
Мин. температура воды на выходе	°C				Į.	5			
Макс. температура воды на входе	°C	C 20							
Мин. разность температур воды на входе/выходе	°C								
Макс. разность температур воды на входе/выходе	°C								
Мин. температура наружного воздуха	°C	℃ 6							
Макс. температура наружного воздуха	°C	43	46	46	46	43	46	46	43

⁽¹⁾ При условиях Eurovent.

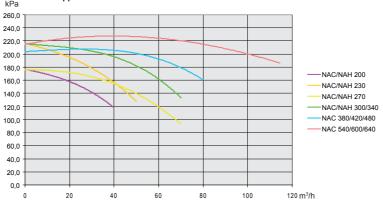

⁽²⁾ Коэффициент сезонной энергоэффективности ESEER рассчитан по методу Eurovent EN14511

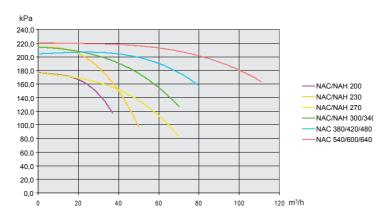
Чиллеры NEOSYS™ участвуют в программе LCP сертификации Eurovent (Сертификация всех моделей до 600 кВт) (www.eurovent-certification.com)

NEOSYS	NAH	200	230	270	300
Режим охлаждения					
Холодопроизводительность ⁽¹⁾	кВт	191	215	271	295
Коэффициент энергоэффективности EER ⁽²⁾		2,75	2,54	2,79	2,65
Коэффициент сезонной энергоэффективности ESEER ⁽²)	4,00	3,76	3,99	3,94
Режим нагрева					
Теплопроизводительность ⁽¹⁾	кВт	219	252	312	346
Коэффициент энергоэффективности СОР		3,21	3,13	3,20	3,12
Электрические характеристики					
Электропитание	В/фаз/Гц		400/	3/50	
Холодильный контур					
Количество контуров	ШТ.		2	2	
Компрессор	ШТ.		4	1	
Испаритель	Тип	Пластинчатый тепло	обменник из нержа сварными со		1 AISI 316 с медными
Количество ступеней мощности			6		4
Гидравлическое сопротивление					
Гидравлическое сопротивление ⁽¹⁾	кПа	25,7	32,5	38,8	46,2
Гидравлические соединения					
Тип			Victa	aulic	
Диаметр	дюйм		4	ш	
Акустические характеристики					
Общий уровень звуковой мощности (1)	дБА	89	89	91	91
Уровень звукового давления на расстоянии 10 м	дБА	57	57	59	59
Предельные эксплуатационные характеристики					
Мин. температура воды на выходе - охлаждение	°C		Ę	5	
Макс. температура воды на входе	°C		2	0	
Мин. температура наружного воздуха - охлаждение	°C		6	3	
Макс. температура наружного воздуха - охлаждение	°C		4	6	
Макс. температура воды на выходе - нагрев	°C		5	0	
Макс. температура наружного воздуха - нагрев	°C		-1	2	

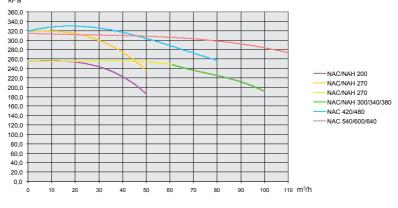
⁽¹⁾ При условиях Eurovent.

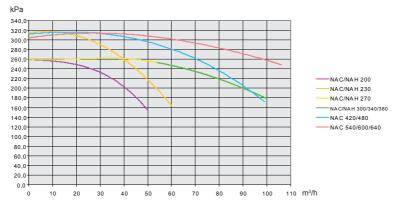
Встроенный гидравлический модуль

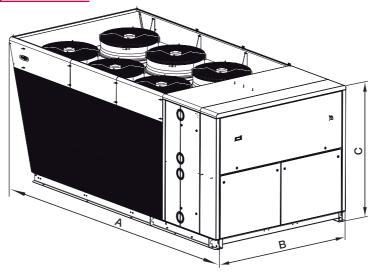


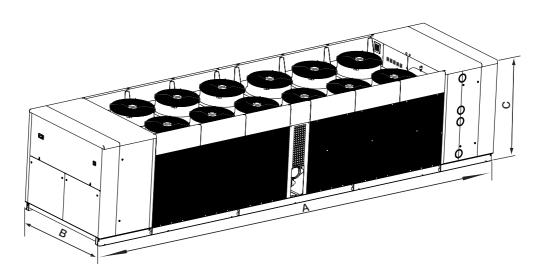

01	Водяной фильтр (устанавливается на месте)
02	Воздуховыпускной клапан
03	Порт измерения давления
04	Насос
05	Предохранительный клапан с манометром
06	Расширительный бак
07	Электронное реле протока
08	Пластинчатый теплообменник
09	Вентиль регулирования расхода воды
10	Порт измерения давления и сливной вентиль
11	Датчик температуры на входе
12	Датчик температуры воды на выходе

⁽²⁾ Коэффициент сезонной энергоэффективности ESEER рассчитан по методу Eurovent EN14511.


Кривые характеристик насосов


Одинарный / Сдвоенный насос – Низкое давление

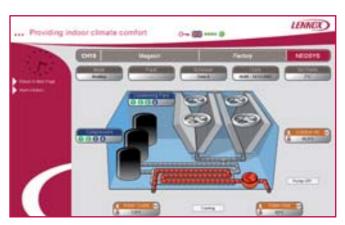

Одинарный / Сдвоенный насо $\mathbf{c}_{\mathsf{kPa}}^-$ Высокое давление



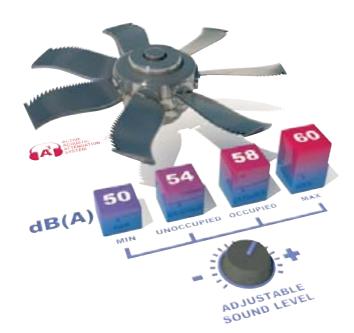
Габаритные размеры и масса

Типоразмеры 200 - 640

Типоразмеры 680 - 1080


NEOSYS™	NAC	200	230	270	300	340	380	420	480
А	ММ	3590	3590	3590	4620	4620	4620	5650	5650
В	ММ	2280	2280	2280	2280	2280	2280	2280	2280
С	ММ	1965	1965	1965	1965	1965	1965	1965	1965
Масса без воды	КГ	1962	1989	2234	2615	2889	2962	3429	3530

NEOSYS	NAC	540	600	640	680	760	840	960	1080
A	MM	5650	6680	6680	9240	9240	11300	11300	11300
В	MM	2280	2280	2280	2280	2280	2280	2280	2280
С	MM	1965	1965	1965	1965	1965	1965	1965	1965
Масса без воды	КГ	3539	3885	3918	6445	6570	7700	7825	7815


NEOSYS™	NAH	200	230	270	300
А	ММ	3590	3590	4620	4620
В	ММ	2280	2280	2280	2280
С	MM	1965	1965	1965	1965
Масса без воды	КГ	2088	2114	2769	2795

Дополнительные принадлежности и функции

- Гидравлический модуль с одинарным или сдвоенным насосом низкого или высокого давления (включая соединения Victaulic)
- Частичная теплоутилизация
- Комплект для эксплуатации при низкой температуре наружного воздуха до -20°C / Нагреватели защиты от замораживания
- Комплект для эксплуатации при низкой температуре холодоносителя до -10°C
- Теплообменник конденсатора с антикоррозийным покрытием Thermoguard™
- Задняя защитная решетка конденсатора
- Плавный пуск / Компенсатор реактивной мощности (до типоразмера NAC 640)
- Счетчик электроэнергии
- Плата расширения ВЕ 50 для дистанционного управления
- Дистанционный пульт управления DC50™ / Сервисный пульт DS50™
- Сетевые интерфейсы Modbus, Lon, BacNet / Система мониторинга Adalink™
- Внешние фланцы для подсоединения водяных труб
- Виброизоляторы

Система мониторинга ADALINK™

Hydrolean™ • 20 - 165 kW

Чиллеры/тепловые насосы с конденсатором водяного охлаждения

Основные применения

- Жилые здания
- Офисы
- Отели
- Промышленные предприятия
- Административные здания
- Небольшие коммерческие здания

Преимущества оборудования

- Хладагент R407C, спиральные компрессоры
- Применения только охлаждение
- Геотермальные водяные тепловые насосы
- Сплит версия с выносным конденсатором
- Расширенный микропроцессорный контроллер Climatic
- Надежный и компактный агрегат для внутренней установки

Общая информация

Чиллеры и тепловые насосы HYDROLEAN™ используются для комфортного кондиционирования офисов, магазинов и гостиниц, особенно при строгих ограничениях по размеру и шуму.

В серии агрегатов **HYDROLEAN™** использованы самые последние технологические решения, такие как спиральные компрессоры, паяные пластинчатые теплообменники и микропроцессорное управление. Компактные агрегаты **HYDROLEAN™** могут быть легко смонтированы в ограниченном пространстве. Агрегат размещен в полностью закрытом корпусе, поэтому для монтажа не требуется отдельное помещение. Для экономии пространства агрегаты можно устанавливать один на другой.

Оригинальная конструкция корпуса имеет следующие преимущества: Простота обслуживания (для демонтажа панелей не требуется дополнительный инструмент) и оптимальный доступ к различным компонентам.

Агрегаты **HYDROLEAN™** поставляются в 3 исполнениях: Модели SWC, работающие только в режиме охлаждения; модели SWH с тепловым насосом и модели SWR с выносным конденсатором. Агрегаты могут использоваться как геотермальные тепловые насосы.

Агрегаты **HYDROLEAN™** совместимы с сухими охладителями (FC ECA/FC CHV) или выносными конденсаторами (ECA).

Основные компоненты

- Корпус и рама с алюцинковым покрытием
- Защитное эпоксидное покрытие (RAL 9002)
- Хладагент R407C
- Спиральный компрессор
- Сдвоенные компрессоры для агрегатов мощностью от 50 до 100 кВт, 3 ступени мощности для агрегатов свыше 100 кВт
- Теплоизолированный паяный пластинчатый испаритель из нержавеющей стали марки 316
- Теплоизолированный паяный пластинчатый конденсатор из нержавеющей стали марки 316
- Фильтр-осушитель, терморегулирующий вентиль, реле высокого и низкого давления, 4-ходовой клапан для моделей с тепловым насосом; съемный фильтр-осушитель, смотровое стекло и вентили в линии нагнетания и всасывания для моделей с выносным конденсатором.
- Отсек с аппаратурой управления и защиты соответствует требованиям стандарта EN 60204-1
- Главный выключатель
- Лопастное реле протока для испарителя (поставляется без монтажа)
- Патрубки типа Victaulic для подсоединения водяных труб

Расширенный микропроцессорный контроллер

- Микропроцессорное управление
- Пульт управления на лицевой панели
- Регулирование температуры хладагента и воды
- Формирование сигнала общей аварии
- Таймер наработки и выравнивание времени работы компрессоров
- Защита от замораживания
- Дистанционное включение/отключение
- Подключение к системе управления инженерным оборудованием здания

HYDROLEAN™	SWC - K	20	25	35	40	50	65	80	90	100	120	135	165
Режим охлаждения													
Холодопроизводительность ⁽¹⁾	кВт	18,9	24,2	34,6	42,2	49,3	69,6	75,8	86	103	111	140	165
Коэффициент энергоэффективности EER ⁽²⁾		4,14	3,75	3,76	3,85	3,81	3,74	3,67	3,9	3,66	3,72	3,8	3,68
Коэффициент сезонной энергоэффективности ESEER ⁽²)	4,76	4,34	4,32	4,43	5,31	5,14	5,16	5,24	5,28	5,13	5,12	4,97
Электрические характеристики		.,. 0	1,01	.,02	.,	7 0,0 .	10,	0,.0	0,2 .	0,20	0,.0	0,.2	1,0.
Электропитание	В/фаз/Гц						400/	/3/50					
Холодильный контур							100/	0,00					
Количество контуров	ШТ.					1						2	
Количество компрессоров	ШТ.			1		· ·		2				3	
Количество ступеней мощности	ШТ.			1						3		4	
Масса хладагента в контуре	КГ	1,3	1,5	2	2,5	3,3	4,5	4,5	5,9	5,9	5,3		,4
Гидравлические соединения	144	1,0	1,0		2,0	0,0	7,0	7,0	0,0	0,0	0,0		,¬
Гидравлические соединения	Тип						Victa	aulic					
Температура воды на входе/выходе	дюйм / DN		1»1/4/	/ DN32			VICE	June	2» / I	DN50			
Конденсатор	дюим/ ыч		1//1/7/	DINJZ					2// 1	D1430			
•		Пла	стинча	тый теп	лообме	нник из	з нержа	веюшей	й стали	марки А	AISI 316	с мелні	ЫМИ
Конденсатор	Тип	1 10 10			71000mc		ными сс				1131310	стеді	J
Расход воды	м3/ч	4	5,3	7,5	9,2	10,7	15,2	16,6	18,6	22,5	24,2	30,4	36,1
Емкость водяного контура	Л	1,6	1,6	2,5	3,1	4,1	5,6	5,6	7,4	7,4	13,4	18,6	18,6
Гидравлическое сопротивление	кПа	46	77	71	69	51	57	67	50	71	65	57	79
Рабочее давление воды	кПа			'		'	60	00					•
Испаритель	'												
Испаритель	Тип	Пла	стинча	тый теп	лообме	ННИК ИЗ	з нержа	веющей	і́ стали	марки А	AISI 316	с медні	ЫМИ
							ными со						
Расход воды	м³/h	3,3	4,2	6	7,3	8,5	12	13,1	14,8	17,7	19,1	24,1	28,4
Емкость водяного контура	Л	1,6	1,6	2,5	3,1	4,1	5,6	5,6	7,4	7,4	13,4	18,6	18,6
Гидравлическое сопротивление	кПа	30	49	45	44	33	36	43	32	45	41	37	50
Рабочее давление воды	кПа						60	00					
Акустические характеристики			ı							1		ı	
Общий уровень звуковой мощности (1)	дБА	72	78	80	80	81	83	83	83	87	85	88	91
HYDROLEAN™	SWH - K	20	25	35	40	50	65	80	90	100	120	135	165
Режим охлаждения													
Холодопроизводительность ⁽¹⁾	кВт	17,5	22,6	32,2	39,3	45,9	64,9	70,7	80,1	95,7	103	130	154
Коэффициент энергоэффективности EER ⁽²⁾		3,83	3,48	3,48	3,56	3,53	3,47	3,4	3,61	3,4	3,45	3,53	3,41
Коэффициент сезонной энергоэффективности Е	SEER (2)	4,05	4,05	4,02	4,11	4,94	4,79	4,81	4,88	4,91	4,76	4,76	4,61
Режим нагрева	-	.,,	1 .,	-,	.,	.,	.,	.,	.,		.,	.,	
Теплопроизводительность ⁽¹⁾	кВт	19,4	26	37	45,2	52,4	74,4	81,9	91	110	119	147	177
Коэффициент энергоэффективности СОР ⁽²⁾		3,29	3,21	3,19	3,23	3,21	3,18	3,14	3,24	3,13	3,16	3,18	3,12
Электрические характеристики		0,20	0,2.	0,.0	0,20	7 0,2 .	10,.0	0,	0,2 .	0,.0	0,.0	0,.0	
Электропитание	В/фаз/Гц						400/	/3/50					
Холодильный контур	J 27 4037 1 4						100/	0/00					
Количество контуров	ШТ.					1						2	
Количество компрессоров	ШТ.			1		_ ·		2				3	
Количество ступеней мощности	ШТ.			1				2		3		4	
Масса хладагента в контуре	КГ	1,3	1,5	2	2,5	3,3	4,5	4,5	5,9	5,9	5,3		,4
Гидравлические соединения	IM	1,0	1,0		2,0	0,0	4,0	4,0	0,0	0,0	0,0		,4
Гидравлические соединения	Тип						Victa	aulic					
Температура воды на входе/выходе	дюйм / DN		1,1//	/ DN32			VICE	aunc	2,, / 1	DN50			
	дюим/ им		1 » 1 / 4 /	DINSZ					Z» / I	DINOU			
Конденсатор		Ппэ	CTNHU2	тый теп	пообма	HHNK N	з нержа	BEWITTE	і стапи	Mankin	AISI 316	СМЕПП	ЫМИ
Конденсатор	Тип	11110	CIVILINA	ואוטו וכוו	, IOOOIVIC		ными со			MUDINI /	טו כ וכוי	с медпі	ا ۱۸۱۸ا
Расход воды	м3/ч	3,8	5	7,1	8,7	10,1	14,4	15,8	17,6	21,3	22,9	28,8	34,2
Емкость водяного контура	Л	1,6	1,6	2,5	3,1	4,1	5,6	5,6	7,4	7,4	13,4	18,6	
Гидравлическое сопротивление	кПа	41	69	64	62	46	51	61	45	64	59	52	71
Рабочее давление воды	кПа							00					
Испаритель													
Испаритель	Тип	Пла	стинча	тый теп	лообме	нник из	з нержа	веющей	и стали	марки А	AISI 316	с медні	ЫМИ
<u> </u>			I .				ными сс			I	1	I	
Расход воды	m³/h	3	3,9	5,6	6,8	7,9	11,2	12,2	13,8	16,5	17,8	22,4	26,5
Емкость водяного контура	Л	1,6	1,6	2,5	3,1	4,1	5,6	5,6	7,4	7,4	13,4	18,6	18,6
Гидравлическое сопротивление	кПа	26	42	40	38	29	32	37	28	39	36	32	44
Рабочее давление воды	кПа						60	00					
Акустические характеристики													
Общий уровень звуковой мощности ⁽¹⁾	дБА	72	78	80	80	81	83	83	83	87	85	88	91

⁽¹⁾ При условиях Eurovent.

⁽²⁾ Коэффициенты EER и COP только для компрессоров

Чиллеры HYDROLEAN™ участвуют в программе LCP сертификации Eurovent (www.eurovent-certification.com)

HYDROLEAN™	SWR - K	20	25	35	40	50	65	80	90	100	120	135	165	
Режим охлаждения														
Холодопроизводительность (1)	кВт	17,6	23,1	32,8	40	46,9	66,4	72,8	81,8	98,5	106,1	132,7	158,3	
Коэффициент энергоэффективности EER ⁽²⁾		3,33	3,22	3,2	3,26	3,28	3,23	3,23	3,33	3,24	3,26	3,26	3,26	
Электрические характеристики														
Электропитание	В/фаз/Гц						400/	′3/50						
Холодильный контур														
Количество контуров	ШТ.					1						2		
Количество компрессоров	ШТ.			1				2				3		
Количество ступеней мощности	ШТ.			1			2	2		3		4		
Гидравлические соединения														
Гидравлические соединения	Тип						Vict	aulic						
Линия нагнетания	дюйм / DN		7/8"			1" 1/8			1" 3/8		1" 3/8 & 1			
Жидкостная линия	дюйм / DN		5/	8"					7/	′8"				
Испаритель														
Испаритель	Тип	Пл	астинч	атый т					еющей динені		марки	AISI 31	6 c	
Расходводы	м3/ч	3,0	4,0	5,7	6,9	8,1	11,4	12,5	14,1	17,0	18,3	22,9	27,3	
Емкость водяного контура	Л	1,6	1,6	2,5	3,1	4,1	5,6	5,6	7,4	7,4	13,4	18,6	18,6	
Гидравлическое сопротивление	кПа	26,2	44,3	41,2	39,7	29,9	33,2	39,5	29,3	41,7	38,2	33,6	46,7	
Рабочее давление воды	кПа	Ta 600												
Акустические характеристики	-													
Общий уровень звуковой мощности ⁽¹⁾	дБА	72	78	80	80	81	83	83	83	87	85	88	91	

⁽¹⁾ При условиях Eurovent.

Предельные эксплуатационные характеристики

HYDROLEAN™	SWH/ SWC	20	25	35	40	50	65	80	90	100	120	135	165
Мин. температура воды на выходе испарителя	°C						Ę	5					
Макс. температура воды на входе испарителя	°C						2	0					
Мин. разность температур воды на входе/выходе	°C						(3					
Макс. разность температур воды на входе/выходе	°C						3	3					
Макс. температура воды на выходе конденсатора ⁽³⁾	°C						5	3					
Мин. температура воды на входе конденсатора ⁽⁴⁾	°C						2	5					

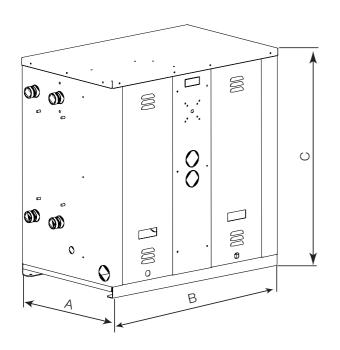
HYDROLEAN™	SWR -	20	25	35	40	50	65	80	90	100	120	135	165
Мин. температура воды на выходе испарителя	°C						Ę	5					
Макс. температура воды на входе испарителя	°C						2	0					
Мин. разность температур воды на входе/выходе	°C						3	3					
Макс. разность температур воды на входе/выходе	°C						8	3					
Мин. температура нагнетания ⁽³⁾	°C						3	5					
Макс. температура нагнетания ⁽⁴⁾	°C						6	0					

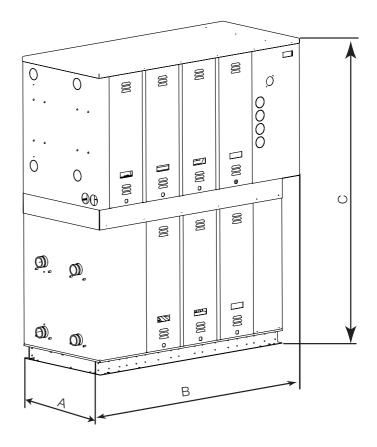
⁽³⁾ Для режима охлаждения и температуры воды на выходе испарителя не выше 12 °C

Дополнительные принадлежности и функции

- Оборудование для управления работой внешних вентиляторов
- Оборудование для управления работой внешних насосов
- Управляемые по давлению клапаны водяного контура
- Водяной фильтр для испарителя
- Водяной фильтр для конденсатора
- Байпас горячего газа
- Внешние фланцы для подсоединения водяных труб
- Низкошумное исполнение с звукоизолирующим кожухом компрессора
- Резиновые виброизолирующие опоры

- Комплект для работы при низкой температуре холодоносителя в испарителе (-8 °C)
- Манометры высокого и низкого давления
- J-BUS интерфейс КР06
- Дистанционный пульт управления
- Динамическая уставка
- Регулирование расхода горячей воды
- Сетевой интерфейс
- RS485 / Интерфейс Modbus


⁽²⁾ Коэффициенты EER и COP только для компрессоров


⁽⁴⁾ Можно уменьшить, если установить регулируемый по давлению водяной вентиль.

Габаритные размеры и масса

Типоразмеры 120 - 165

Типоразмеры 020 - 100

HYDROLEAN™	SWC	20	25	35	40	50	65	80	90	100	120	135	165
A	MM	502	502	502	502	645	645	645	645	645	645	645	645
В	MM	802	802	802	802	1470	1470	1470	1470	1470	1470	1470	1470
С	MM	815	815	815	815	854	854	854	854	854	1705	1705	1705
Эксплуатационная масса	КГ	124	192	213	239	393	426	444	485	531	690	760	803
Масса без воды	КГ	121	189	208	233	385	415	433	470	517	663	723	766

HYDROLEAN™	SWH	20	25	35	40	50	65	80	90	100	120	135	165
A	MM	502	502	502	502	645	645	645	645	645	645	645	645
В	MM	802	802	802	802	1470	1470	1470	1470	1470	1470	1470	1470
С	MM	815	815	815	815	854	854	854	854	854	1705	1705	1705
Эксплуатационная масса	КГ	125	194	215	241	398	432	450	490	539	698	768	813
Масса без воды	КГ	122	191	210	235	390	421	439	475	524	671	731	776

HYDROLEAN™	SWR	20	25	35	40	50	65	80	90	100	120	135	165
A	MM	502	502	502	502	645	645	645	645	645	645	645	645
В	MM	802	802	802	802	1470	1470	1470	1470	1470	1470	1470	1470
С	MM	815	815	815	815	854	854	854	854	854	1705	1705	1705
Эксплуатационная масса	КГ	118	188	202	230	380	403	409	438	486	640	693	736
Масса без воды	КГ	112	180	195	217	361	385	403	431	479	627	674	718

Сухая градирня

Компания LENNOX также поставляет сухие градирни и конденсаторы. Смотрите страницу 66 данного каталога.

Фанкойлы и

Воздухообрабатывающие агрегаты

Providing indoor climate comfort

• Фанкойлы с центробежными вентиляторами	
COMFAIR™ HC	
0,8 -13 кВт / 227 - 2010 м³/ч	96
• Высоконапорные секционные фанкойлы	
COMFAIR™ HH	
3,6 - 61 кВт / 837 - 9250 м³/ч	98
• Настенные фанкойлы	
COMFAIR™ HD	
2 - 4 кВт	100
• Высоконапорные моноблочные фанкойлы	
QUANTUM™ M	
1,4 - 9 кВт / 200 - 1060 м³/ч	102
• Кассетные фанкойлы	
cwc	
2 - 9 кВт	106
• Конвекторы	
INDUCTAIR™	
0,4 - 2,7 кВт	110
• Кассетные фанкойлы с эффектом флотации Coanda	
COANDAIR™	
1,3 - 5,6 кВт	112
• Тепловентиляторы • Дестратификаторы	
AXIL™ • EQUITHERM™	
12 - 105 кВт	116
• Компактные воздухообрабатывающие агрегаты	
MINIAIR™	
2 - 44 кВт / 500 - 7400 м³/ч	120
• Воздухообрабатывающие агрегаты с теплоутилизацией	
MINIAIR™ +	
3 - 28 кВт	122
• Модульные приточно-вытяжные агрегаты	
CLEANAIR 23LX	
1000 - 100000 м³/ч	124

COMFAIR™ HC • 0,8 → 13 kW

• 227 → 2010 m³/h

Фанкойлы с центробежными вентиляторами

Основные применения

- Любые коммерческие здания
- Офисы
- Отели

Преимущества оборудования

- Легкий и быстрый монтаж
- Большой выбор конфигураций и опций
- Агрегаты производятся под заказ

Общая информация

Фанкойлы с центробежными вентиляторами имеют 12 типоразмеров, 7 конфигураций установки, поставляются различных исполнений: 2-х и 4-х трубная система или 2-х трубная система с электрическим воздухонагревателем.

Стандартное исполнение: 3-рядный теплообменник для 2-х трубной системы и 3+1 рядные теплообменники для 4-х трубной системы.

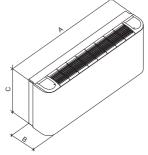
Декоративный корпус: Окрашенный в белый цвет оцинкованный стальной лист и светло-серые воздухораспределители из АВС-полимера.

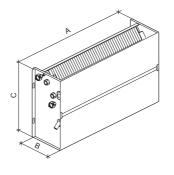
Основные компоненты

- Корпус из оцинкованной листовой стали толщиной 0,8 мм. Поддон с патрубком для сбора конденсата входит в стандартную комплектацию.
- Моющийся полипропиленовый фильтр класса EU1 входит в стандартную комплектацию.
- Однофазные центробежные вентиляторы с алюминиевым рабочим колесом, протестированы на заводе. Вентиляторы имеют 6 скоростей, 3 из них подключены на заводе.
- Медный теплообменник с алюминиевым оребрением. Патрубки с внутренней газовой резьбой диаметром ¾", подсоединение водяных труб слева, подключение справа по запросу. Теплообменник можно переставить на месте установки.

Дополнительные принадлежности и конфигурации

- Внутренняя или наружная тепло или звукоизоляция
- Воздушные фильтры класса EU2 или EU3
- Высоконапорные центробежные вентиляторы
- Контакты включения и/или аварии вентилятора
- Теплообменники различной рядности (4 –рядный, 1-рядный дополнительный, 2-рядный)
- Испарительные теплообменники
- Электрические воздухонагреватели
- Различные цвета окраски декоративного корпуса
- Различные цвета окраски воздухораспределителей из АБС-полимера
- 2-х и 3-ходовые регулирующие вентили, сервоприводы двухпозиционные напряжением 230 В или 24 В, трехпозиционные напряжением 24 В, с плавным регулированием 0-10 В напряжением 24 В
- Клапаны подмешивания наружного воздуха
- Насосы отвода конденсата
- Пленумы/воздуховоды с или без круглых фланцев
- Приточные или рециркуляционные диффузоры из полимера или алюминия
- Декоративная деревянная или белая окрашенная стальная панель для агрегатов без декоративного корпуса
- Большой выбор систем управления встроенных или дистанционных
- Нестандартные агрегаты по отдельному запросу


														•
COMFAIR™		НС	10	20	30	40	50	60	70	80	90	100	110	120
2-трубная система (3-рядн	ые теплообменни	іки)												
Холодопроизводительность	Явная	кВт	0,74	1,02	1,76	2,17	2,18	3,08	3,15	3,96	4,82	6,06	7,91	8,47
(1)	Общая	кВт	0,86	1,28	2,17	2,53	3,11	3,85	4,33	5,59	6,9	7,97	10,00	11,01
Теплопроизводительность ⁽²⁾		кВт	1,25	1,87	2,59	3,28	3,66	4,48	5,14	6,69	8,13	10,10	13,10	14,15
Расход воды		л/ч	148	220	373	435	535	662	745	961	1187	1376	1727	1898
Гидравлическое сопротивление	Охлаждение	кПа	0,9	2	6,3	8,8	16,1	25,9	37,6	27,9	19,1	26,6	21,5	26,8
	Нагрев	кПа	0,7	1,4	4,9	7,5	13,7	22	34,7	23,7	17,6	23,3	18,8	24,2
)		кВт	0,6	1	1	1	2	2	2	3	3	4	4	4
Электрический нагреватель		А	2,61	4,35	4,35	4,35	8,7	8,7	8,7	13,04	13,04	17,39	17,39	17,39
Расход воздуха		м3/ч	227	289	404	453	575	685	708	1058	1242	1356	2012	2003
Уровень звуковой мощности ⁽⁴⁾		дБА	46	45	44	47	47	52	52	58	64	63	67	66
4-трубная система (3 + 1-ря	ядные теплообме	нники)												
Холодопроизводительность	Явная	кВт	0,71	1,12	1,69	1,93	2,49	2,91	3,34	4,11	5,26	5,86	7,66	8,20
(1)	Общая	кВт	0,84	1,23	2,08	2,38	2,96	3,69	4,47	5,35	6,57	7,71	9,7	10,70
Теплопроизводительность ⁽³⁾		кВт	1,26	1,89	2,73	2,89	3,49	4,14	5,04	5,41	6,72	8,38	10,10	11,40
Do over no nu	(1) Охлаждение	л/ч	144	212	358	409	509	635	769	920	1130	1330	1673	1837
Расход воды	(3) Нагрев	л/ч	108	163	235	249	300	356	433	465	578	739	891	1008
Гидравлическоесопротив	Охлаждение	кПа	0,61	2	5,7	8,2	10,7	20	49,8	11,6	37,8	24,9	21,7	25,1
ление	Нагрев	кПа	2,1	5,7	13,9	16,4	27,9	35,1	61,5	14,0	20,9	48,4	41,3	47,3
Расход воздуха	1	m³/h	216	275	384	430	546	651	673	1005	1180	1291	1916	1908
Уровень звуковой мощности ⁽⁴⁾ дБ		дБА	45	47	44	47	46	53	53	59	65	63	67	67
Максимальное располагае	мое статическое	давлени	е (сни	жение	произ	водит	ельнос	ти на :	50%)					
2-трубная система		Па	25	25	19	27	32	36	44	55	53	75	84	84
4-трубная система		Па	19	19	15	22	25	28	36	42	44	74	83	83
JUNEOUGH BAHIRIO HA WAKCIWWARK	v 0.0			1			1							


Приведены данные на максимальной скорости - 0 Па располагаемого статического давления.

Фанкойлы COMFAIR™ HC участвуют в программе FC сертификации Eurovent (www.eurovent-certification.com)

Габаритные размеры и масса

Фанкойлы в декоративном корпусе

Фанкойлы без декоративного корпуса

COMFAIR™		НС	10	20	30	40	50	60	70	80	90	100	110	120
l ''',	Количество рядов	ШТ.	3	3	3	3	3	3	3	3	3	3	3	3
	Присоединения	Øмм	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"
Дополнительныйтеплоо	Количество рядов	ШТ.	1	1	1	1	1	1	1	1	1	1	1	1
бменник	Присоединения	Øмм	1/2"	1/2"	1/2"	1/2"	1/2"	1/2"	1/2"	1/2"	1/2"	1/2"	1/2"	1/2"
Сливной патрубок (наружный диаметр)		Øмм	20	20	20	20	20	20	20	20	20	20	20	20
Фанкойлы в декоративном корпусе														
A		MM	660	860	1060	1060	1260	1260	1260	1460	1460	1660	1960	1960
В		MM	220	220	220	220	220	220	220	220	220	256	256	256
С		MM	480	480	480	480	480	480	585	585	585	602	602	602
Масса нетто		КГ	14	17	22	23	27	28	30	35	36	46	55	57
Фанкойлы без декорати	івного корпуса													
A		MM	420	620	820	820	1020	1020	1020	1220	1220	1380	1680	1680
В		MM	220	220	220	220	220	220	220	220	220	252	252	252
С		MM	460	460	460	460	460	460	565	565	565	585	585	585
Масса нетто		КГ	11	14	19	20	23	24	26	31	32	41	50	52

⁽¹⁾ Режим охлаждения: Температура воды на входе: 7°С; температура воды на выходе: 12°С; температура воздуха на входе: 27 °С по сухому термометру, 19 °С по влажному термометру.

⁽²⁾ Режим нагрева: Температура воды на входе: 50 °C; расход воды соответствует расходу в режиме охлаждения; температура воздуха на входе: 20°C

⁽³⁾ Режим нагрева: Температура воды на входе: 70 °C; температура воды на выходе: 60 °C; температура воздуха на входе: 20 °C

⁽⁴⁾ Уровень звуковой мощности: в соответствии с ISO 23741

COMFAIR HH • 3,6 → 61,3 kW

• 837 → 9250 m³/h

Высоконапорные фанкойлы

Основные применения

- Любые коммерческие здания
- Офисы и магазины
- Отели

Преимущества оборудования

- Высокая производительность
- Легкий и быстрый монтаж как фанкойла
- Множество различных конфигураций

Общая информация

Высоконапорные фанкойлы с центробежными вентиляторами имеют 7 типоразмеров, могут быть вертикальной или горизонтальной конфигурации, поставляются различных исполнений: 2-х и 4-х трубная система или 2-х трубная система с электрическим воздухонагревателем.

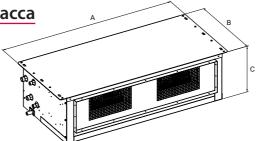
Стандартное исполнение: 3-х или 4-рядный теплообменник для 2-х трубной системы и 3-х или 4-рядный + 1-но или 2-рядный теплообменники для 4-х трубной системы.

Основные компоненты

- Корпус из оцинкованной листовой стали толщиной 1 мм с изоляцией. Поддон с патрубком для сбора конденсата входит в стандартную комплектацию.
- Вентиляторы проверяются на заводе. Один или два центробежных вентилятора двухстороннего всасывания с горизонтально расположенным алюминиевым рабочим колесом. Рабочее колесо статически и динамически сбалансировано. Однофазные асинхронные электродвигатели с защитой от перегрузки.
- Медный теплообменник с алюминиевым оребрением. Патрубки с наружной резьбой и стандартные воздуховыпускные клапаны. Подсоединение водяных труб слева, подсоединение справа по запросу.

Дополнительные принадлежности и конфигурации

- Внутренняя или наружная тепло или звукоизоляция
- Воздушные фильтры класса G3 или угольный фильтр класса G2
- Теплообменники различной рядности (4, 5, 6-рядные, 1 или 2-рядные дополнительные)
- Испарительные теплообменники
- Электрические воздухонагреватели (от 3 до 24 кВт)
- 2-х и 3-ходовые регулирующие вентили, сервоприводы двухпозиционные напряжением 230 В или 24 В, трехпозиционные напряжением 24 В, с плавным регулированием 0-10 В напряжением 24 В
- Клапаны подмешивания наружного воздуха с ручным или автоматическим управлением
- Насосы отвода конденсата
- Приточные или рециркуляционные пленумы (прямые или с поворотом на 90°) с или без круглых фланцев, гибкие вставки, соединительные фланцы
- Приточные или рециркуляционные алюминиевые диффузоры (с фильтром или без)
- Большой выбор дистанционных систем управления
- Нестандартные агрегаты по отдельному запросу



COMFAIR™		НН	10	20	30	40	50	60	70
2-трубная система (3-рядны	й теплообменник для							00	
	Явная	кВт	2,87	5,64	7,36	8,63	11	21,10	39,5
Холодопроизводительность (1)	Общая	кВт	3,64	7,05	9,2	10,6	13,1	27,80	50,60
Теплопроизводительность ⁽²⁾		кВт	4,98	8,51	11,2	12,8	16,9	32,40	60,10
Расход воды		л/ч	626	1213	1582	1823	2253	4782	8703
Гидравлическоесопротивле	Охлаждение	кПа	24	35,9	33,8	31,9	35,9	34	40
ние	Нагрев	кПа	22,2	31,7	28,9	27,9	33,2	29	34
Электрический нагреватель	Стандартный	кВт	3	6	6	9	9	12	18
	Высокий	кВт	4,5	9	9	12	12	18	24
Расход воздуха		м3/ч	837	1423	1951	2131	3002	4678	9250
Уровень звуковой мощности ⁽⁴⁾		дБА	68	66	70	69	75	78	81
4-трубная система (3+1-рядн	ные теплообменники	для моде	лей НН 1	0-50 – 4+2	рядные д	ля моделе	й HH 60-7	(0)	•
Холодопроизводительность ⁽¹⁾	Явная	кВт	3,1	5,63	7,07	8,04	10,6	20,15	37,75
	Общая	кВт	3,6	7	8,3	9,57	12,3	24,95	45,55
Теплопроизводительность ⁽³⁾		кВт	4,18	7	9,17	10,6	14	38,80	70,15
Degrapas	Охлаждение	л/ч ⁽¹⁾	619	1205	1428	1646	2116	4291	7835
Расход воды	Нагрев	л/ч ⁽³⁾	360	602	789	912	1204	3337	6033
Гидравлическое	Охлаждение	кПа	15,9	26,8	28	29,2	30,8	27	32
сопротивление	Нагрев	кПа	26,8	22,9	37	21,7	33,8	33	36
Расход воздуха		м3/ч	795	1352	1853	2024	2852	4444	8788
Уровень звуковой мощности ⁽⁴⁾		дБА	69	66	70	70	73	78	81
Максимальное располагаем	ое статическое давле	ение (сних	кение про	ризводите	льности н	a 50%)			
	мин. скорость	Па	90	80	115	105	135	220	220
2-трубная система	средняя скорость	Па	95	95	130	130	180	240	240
	макс. скорость	Па	105	105	135	135	205	260	260
	мин. скорость	Па	95	90	120	120	180	220	220
4-трубная система	средняя скорость	Па	85	80	115	115	155	210	210
	макс. скорость	Па	75	70	95	90	110	180	180

Приведены данные на максимальной скорости - 0 Па располагаемого статического давления.

Фанкойлы COMFAIR™ HH участвуют в программе FC сертификации Eurovent (www.eurovent-certification.com)

COMFAIR™		НН	10	20	30	40	50	60	70
Стандартный теплообменник	Количество рядов	ШТ.	3	3	3	3	3	4	4
	Присоединения	Øмм	1/2"	1/2"	3/4"	3/4"	1"	1" 1/4	1" 1/2
Дополнительныйтеплообме нник	Количество рядов	ШТ.	1	1	1	1	1	2	2
	Присоединения	Ø mm	1/2"	1/2"	1/2"	1/2"	3/4"	1"	1" 1/4
Сливной патрубок (наружный	диаметр)	Ø mm	20	20	20	20	20	20	20
A		MM	650	1000	1100	1339	1339	1341	2028
В	В		533	533	533	533	533	853	853
С		MM	299	299	324	324	374	674	674
Масса нетто		КГ	28	36	41	46	57	117	192

⁽¹⁾ Режим охлаждения: Температура воды на входе: 7°С; температура воды на выходе: 12°С; температура воздуха на входе: 27 °С по сухому термометру, 19 °С по влажному термометру.

⁽²⁾ Режим нагрева: Температура воды на входе: 50 °C; расход воды соответствует расходу в режиме охлаждения; температура воздуха на входе: 20°C

⁽³⁾ Режим нагрева: Температура воды на входе: 70 °C; температура воды на выходе: 60 °C; температура воздуха на входе: 20°C

⁽⁴⁾ Уровень звуковой мощности: в соответствии с ISO 23741

COMFAIR HD. 2 → 4,4 kW

• 440 → 860 m³/h

Настенные фанкойлы

Основные применения

- Любые коммерческие или жилые здания
- Офисы и магазины
- Отели

Преимущества оборудования

- Легкий и быстрый монтаж
- Идеальное решение для сохранения места в помещении
- Система ионизации воздуха

Общая информация

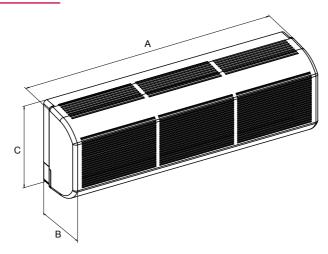
Настенные фанкойлы с тангенциальным вентилятором поставляются 3 типоразмеров, только 2-трубная система, с инфракрасным пультом управления (IR) или проводным пультом управления (TH).

Основные компоненты

- Использование тангенциального вентилятора позволяет улучшить распределение воздуха в помещении
- Стальная монтажная плита для настенной установки входит в стандартную комплектацию
- Медный теплообменник с алюминиевым оребрением. Патрубки с внутренней резьбой и стандартные воздуховыпускные клапаны. Только левое подсоединение водяных труб, использование гибких соединительных трубок упрощает монтаж
- Корпус белого цвета с саморегулирующимися жалюзи (угол наклона 35° в режиме охлаждения и 10° в режиме нагрева)
- Стандартный воздушный фильтр и система ионизации для очистки воздуха и уничтожения микробов

Дополнительные принадлежности и конфигурации

- 2-х и 3-ходовые регулирующие вентили (устанавливаются снаружи агрегата)
- Насос отвода конденсата (устанавливается снаружи агрегата)
- Монтажное основание с поддоном для сбора конденсата для установки 2-х или 3-ходовых вентилей (и насоса отвода конденсата) внутри стены
- Монтажное основание с поддоном для сбора конденсата и белой окрашенной наружной рамкой для установки 2-х или 3-ходовых вентилей (и насоса отвода конденсата) снаружи стены (между агрегатом и стеной)
- Инфракрасный дистанционный пульт управления с дисплеем
 - * включение/отключение, ночной режим, таймер, функции: автоматический, охлаждение, осушение, вентиляция, нагрев, изменение направления потока воздуха, настройка часов, скорости вентилятора: автоматическая, низкая, средняя, высокая, включение/отключение ионизатора, 24-часовой программируемый таймер, перезагрузка
- Большой выбор дистанционных систем управления



COMFAIR™		HD	1	2	3
Vononomousponutoni uosti (1)	Явная	кВт	1,70	1,99	3,44
Холодопроизводительность (1)	Общая	кВт	2,04	2,46	4,42
Теплопроизводительность ⁽²⁾		кВт	2,59	3,32	5,64
Расход воды		л/ч	351	423	760
	Охлаждение	кПа	18	20	68,1
Іидравлическое сопротивление	Нагрев	кПа	16,7	17	59,8
Теплопроизводительность ⁽³⁾	·	кВт	4,50	5,61	9,42
Расход воздуха		м3/ч	440	433	860
Уровень звуковой мощности ⁽⁴⁾		дБА	56	54	61

Приведены данные на максимальной скорости - 0 Па располагаемого статического давления.

Фанкойлы COMFAIR™ HD участвуют в программе FC сертификации Eurovent (www.eurovent-certification.com)

Габаритные размеры и масса

COMFAIR™	HD	1	2	3
A	MM	795	795	1 200
В	MM	178	178	210
С	MM	270	270	320
Масса нетто	KГ	9	9	21

⁽¹⁾ Режим охлаждения: Температура воды на входе: 7°С; температура воды на выходе: 12°С; температура воздуха на входе: 27 °С по сухому термометру, 19 °С по влажному термометру.

⁽²⁾ Режим нагрева: Температура воды на входе: 50 °C; расход воды соответствует расходу в режиме охлаждения; температура воздуха на входе: 20°C

⁽³⁾ Режим нагрева: Температура воды на входе: 70 °C; температура воды на выходе: 60 °C; температура воздуха на входе: 20 °C

⁽⁴⁾ Уровень звуковой мощности: в соответствии с ISO 23741

Quantum™ M • 1,4 - 9 kW

• 200 → 1060 m³/h

Высоконапорные моноблочные фанкойлы

Основные применения

- Любые коммерческие здания
- Большие и средние офисы
- Магазины

Преимущества оборудования

- Высокое статическое давление
- Гибкость применений
- Модульная установка
- Различные варианты подачи воздуха

Общая информация

- Моноблочные высоконапорные фанкойлы с центробежным вентилятором для кондиционирования, фильтрации и подачи наружного воздуха
- Поставляются 9 типоразмеров, 3-х, 4-х или 5-рядные теплообменники, 2 конфигурации (тип U и тип L)
- 2-х или 4-трубная система или 2-трубная система с дополнительным электрическим нагревателем

Основные компоненты

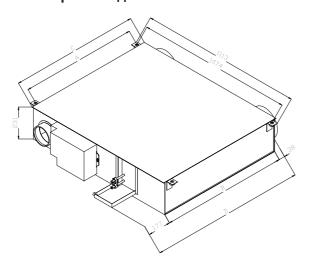
- Корпус из оцинкованной стали толщиной 10/10 мм с внутренней изоляцией (меламиновая пена толщиной 10 мм. Изоляция класса М1)
- Установочные кронштейны с виброизоляторами
- 3-х, 4-х или 5-рядные медные теплообменники с алюминиевым оребрением, патрубки ½″, теплообменники протестированы давлением 13 бар и оснащены воздуховыпускными клапанами. Левое или правое подсоединение водяных труб
- Поддон для сбора конденсата из оцинкованной стали, покрыт толстым слоем битумной краски
- Центробежные вентиляторы двухстороннего всасывания (1, 2 или 3 вентилятора с алюминиевым рабочим колесом) 5-скоростные электродвигатели. Все электрические подключения выполняются через клеммный блок, который расположен со стороны патрубков подсоединения водяных труб и защищен пластиковым корпусом.
- Моющийся воздушный фильтр класса G2 входит в стандартную комплектацию

Дополнительные принадлежности и конфигурации

- Внутренняя или наружная тепло или звукоизоляция
- Тепловая и акустическая изоляция класса МО
- Воздушные фильтры класса G4
- Дополнительный теплообменник для 4-х трубной системы
- Электрические воздухонагреватели
- 2-х и 3-ходовые регулирующие вентили, сервоприводы двухпозиционные напряжением 230 В или 24 В, трехпозиционные напряжением 24 В, с плавным регулированием 0-10 В напряжением 24 В
- Круглое отверстие для подмешивания наружного воздуха (2 диаметра, с клапаном или без)
- Насосы отвода конденсата
- Пульты дистанционного управления
- Комплект для систем управления третьих фирм
- Интерфейсы для подключения к системам управления инженерным оборудованием (BMS)

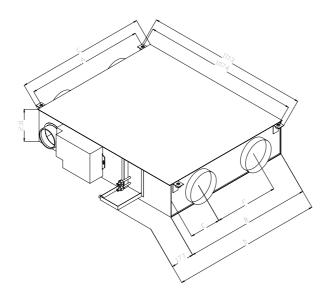
Quantum [™] M	Скорость	QLMC	103	104	105	203	204	
Холодопроизводительность ⁽¹⁾								
Расход воздуха при статическом давлении 50 Па	5		640	640	640	950	950	
– Максимальная скорость								
	5	-	2,33	2,77	3,20	3,56	4,14	
GDUAG VOROROROROMADORIATORI LIOCTI	4	кВт	2,09	2,47 2,08	2,83 2,35	3,29 2,74	3,81	
Явная холодопроизводительность	3 2	KDI	1,78 1,44	1,66	1,84	2,74	3,14 2,52	
	1	1	0,97	1,00	1,18	1,53	1,69	
	5		3,12	2,77	4,61	4,84	5,83	
	4	1	2,85	2,47	4,13	4,52	5,42	
Полная холодопроизводительность	3	кВт	2,48	2,08	3,49	3,85	4,65	
	2		2,05	1,66	2,78	3,19	3,72	
	1		1,43	1,09	1,82	2,25	2,56	
_	5		537	670	792	831	1002	
	4	┦ ,	490	607	710	777	932	
Расход воды - Охлаждение	3	л/ч	426	520	600	661	783	
-	2	-	352	421	478	548	640	
	<u>1</u> 5		245 22,5	285 44,3	313 23,7	387 24,1	441 41,4	
	4	1	19,1	37	19,4	21,3	36	
Гидравлическое сопротивление - Охлаждение	3	кПа	14,8	28	14,3	15,8	26,2	
пидравин теспое сопротивление озмальдение	2	1	10,5	19,1	9,43	11,2	18,2	
	1		5,45	9,4	4,37	5,95	9,21	
Теплопроизводительность (²⁾							<u>'</u>	
	5		3,66	4,37	5,16	5,60	6,56	
	4		3,29	3,90	4,56	5,17	6,04	
Теплопроизводительность 2-трубная система	3	кВт	2,81	3,28	3,78	4,31	4,96	
_	2		2,27	2,61	2,95	3,50	3,98	
	1		1,53	1,72	1,88	2,42	2,68	
	5	-	7,4	13,4	7,2	7,76	12,6	
идравлическое сопротивление – Нагрев 2-трубная истема	3	L кПа	6,12 4,57	10,9 7,99	5,74 4,08	6,72 4,8	10,8 7,57	
	2	Nila	3,1	5,27	2,59	3,28	5,05	
	1	1	1,41	2,47	1,14	1,67	2,46	
	5		2,12 1,95		-		37	
	4	1			-	3,16		
Теплопроизводительность 4-трубная система	3	кВт	1.	,75	-	2,78		
	2		1	,47	-	2,	34	
	1		1,	,07	-	1,	72	
_	5			85	-		94	
	4	-		70	-		76	
Расход воды – Нагрев 4-трубная система	3	л/ч		53	-		43	
	<u>2</u> 1	-		<u>28</u> 93	-		04 50	
	<u> </u>			93 1,4	-		3,9	
	4	1 1		,77	_		2,4	
Гидравлическое сопротивление – Нагрев 4-трубная	3	кПа		3,1	-		83	
СИСТЕМА	2	1		,25	-		18	
	1	1	1	,26	-		12	
Электрические характеристики								
Электропитание		В/фаз/Гц			230/1/50			
	1			0,10			20	
	2	_		0,102			204	
Потребляемая мощность вентилятора	3	кВт		0,103			206	
	4		0,104			0,208 0,210		
Λυνετιμμοενικό γραριτορικετικώ	5			0,105		0,2	210	
Акустические характеристики	4			GE.		-	.0	
	2			65 61			i8	
Уровень звуковой мощности	3	дБА		58			i8 i5	
л ровени звуповой мощпости	4	401						
l de la companya de			53 50			58 55		

Приведены данные на максимальной скорости - 50 Па располагаемого статического давления.


⁽¹⁾ Температура воздуха на входе 27°С, влажность 50%, температура воды – 7/12°С

⁽²⁾ Режим нагрева 2-трубная система: температура воздуха на входе 20°С температура воды на входе 50°С; расход воды соответствует расходу в режиме охлаждения; Режим нагрева 4-трубная система: температура воздуха на входе 20°С температура воды 70/60°С

Quantum™ M	Скорость	QLMC	205	303	304	305
Холодопроизводительность ⁽¹⁾						
Расход воздуха при статическом давлении 50 Па	5		950	1060	1060	1060
– Максимальная скорость						
_	5	_	5,00	4,32	4,97	5,91
	4		4,56	3,96	4,53	5,33
Явная холодопроизводительность	3	кВт	3,69	3,28	3,71	4,27
-	2	_	2,90	2,67	2,98	3,37
	<u> </u>		1,89	1,82	2,00	2,18
-	4		7,41 6,81	6,10 5,64	7,21 6,63	8,96 8,13
	3	кВт	5,59	4,75	5,51	6,58
Полная холодопроизводительность	2	- KDI	4,45	3,93	4,50	5,23
	1	-	2,94	2,74	3,07	3,43
	5		1273	1049	1240	1540
	4		1171	969	1140	1397
	3	л/ч	961	816	948	1131
Lacked seder everanderine	2		765	675	773	899
	1		505	472	527	589
	5		74,8	45,4	75,2	71,8
	4		64,2	39,4	64,5	60,1
Гидравлическое сопротивление - Охлаждение	3	кПа	44,8	28,8	46,1	40,8
	2		29,6	20,3	31,8	26,8
	1		13,9	10,6	15,9	12,4
Теплопроизводительность (²⁾						
	5		7,97	6,77	7,83	8,32
	4		7,27	6,20	7,13	8,40
Теплопроизводительность 2-трубная система	3	кВт	5,85	5,13	5,82	6,71
	2		4,58	4,17	4,67	5,27
	1		2,97	2,86	3,13	3,40
	5		21,1	13,5	21,5	19,1
 Гидравлическое сопротивление – Нагрев 2-трубная –	4		17,8	11,5	18,1	15,7
система	3	кПа	12	8,16	12,5	10,4
_	2		7,68	5,6	8,42	6,71
	1		3,49	2,82	4,07	3,02
	5	_	-		26	-
_	4		-		96	-
Теплопроизводительность 4-трубная система	3	кВт	-	3,39		-
	2	_	-		86	-
	1		-	2,11		-
	5	_	-		72	-
Decrease and Liesans A working an arrange	4		-	 	47	-
Расход воды – Нагрев 4-трубная система	3	л/ч	-		96	-
	<u>2</u> 1				50 84	-
	5			 	0 4 27	-
+	4	_		+	3,7	-
Гидравлическое сопротивление – Нагрев 4-трубная –	3	кПа	_		7,8	-
система	2	- Kila	_		3,1	_
	1	_	_	<u> </u>	55	_
Электрические характеристики	'			, , ,		
Электропитание		В/фаз/Гц				
	1	27 7 227 1 4			0,20	
	2	- -			0,204	
Потребляемая мощность вентилятора	3	кВт			0,206	
'	4	-			0,208	
	5				0,210	
Акустические характеристики						
	1				67	
	2				63	
Уровень звуковой мощности	3	дБА			61	
	4					
	5	1			52	


Габаритные размеры и масса

QUANTUM™ M, тип «U», правая сторона подключения

QUANTUM™M	QMLC	10	20	30
A	MM	498	798	1098
В	MM	566	866	1166
С	MM	584	884	1184
D	MM	781	1081	1381
Macca	КГ	24	37	45

QUANTUM™ M, тип «L», правая сторона подключения

QUANTUM™ M	QMLC	10	20	30
A	MM	498	798	1098
В	MM	566	866	1166
С	MM	584	884	1184
D	MM	781	1081	1381
E	MM	283	214	294,5
F	MM	-	432	582
Macca	КГ	24	37	45

CWC • 2 → 9 kW

Кассетные фанкойлы

Основные применения

- Любые коммерческие здания
- Офисы
- Магазины

Преимущества оборудования

- Легкий и быстрый монтаж
- Эстетичный металлический диффузор
- Возможность применения электрического нагревателя
- Различные цвета окраски металлического диффузора

Общая информация

Кассетные фанкойлы с центробежными вентиляторами имеют 6 типоразмеров, поставляются различных исполнений: 2-х и 4-х трубная система или 2-х трубная система с электрическим воздухонагревателем, а также с пластиковым или металлическим диффузором.

Основные компоненты

- Корпус из оцинкованной листовой стали, полностью теплоизолирован изнутри.
- Удобно расположенный моющийся воздушный фильтр
- Фанкойлы поставляются с одним или с двумя трехскоростными вентиляторами с непосредственным приводом. Двигатель имеет встроенную тепловую защиту.
- Теплообменники из медных трубок с алюминиевым оребрением доя обеспечения высокой эффективности:
 - 2-трубная система охлаждение или нагрев: 1-рядный модель CWC 20, 2-рядный модели CWC 30/40, 3-рядный модель CWC 50, 2-рядный модель CWC 70, 3-рядный модель CWC 90
 - 4-трубная система охлаждение: 1-рядный модель CWC 20, 3-рядный модель CWC 30, 2-рядный модель CWC 40, 2-рядный модель CWC 90
 - 4-трубная система нагрев: 1-рядный модель CWC 20, 2-рядный модель CWC 30, 1-рядный модель CWC 40, 2-рядный модели CWC 50/70/90
- Насос отвода конденсата входит в стандартную комплектацию

Дополнительные принадлежности и конфигурации

- Электрический нагреватель
- Дополнительный поддон для сбора конденсата
- 2-х или 3-ходовые регулирующие вентили
- Комплект поплавкового реле уровня для управления насосом отвода конденсата с контактом аварийной сигнализации
- Комплект для подмешивания наружного воздуха
- Реле уровня воды
- Комплект для подачи воздуха в соседнее помещение
- Различные цвета окраски металлического диффузора
- Термостаты и пульты управления

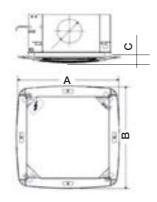
COMFAIR™ 2-трубная система	CWC	20	30	40	50	70	90
Холодопроизводительность ⁽¹⁾							
Холодопроизводительность	кВт	1,87	3,41	4,09	5,33	7,40	8,71
Явная производительность	кВт	1,48	2,73	3,19	3,96	5,76	6,49
Расход охлажденной воды	л/ч	329	577	712	930	1343	1513
Гидравлическое сопротивление	кПа	14,2	22	37,9	37,2	26,2	28,7
Теплопроизводительность ⁽²⁾							
Теплопроизводительность	кВт	2,60	4,05	4,61	6,09	8,31	9,79
Расход горячей воды	л/ч	329	595	712	930	1343	1513
Гидравлическое сопротивление	кПа	17	21,8	37,7	44,4	24,9	24,8
Электрический нагреватель							
Мощность	кВт	1,5	2	2	-	4	4
Электрические характеристики							
Электропитание	В/фаз/Гц			230/	1/50		
Потребляемая мощность двигателя	кВт	0,046	0,046	0,069	0,094	0,180	0,220
Номинальный ток	А	0,2	0,2	0,3	0,5	0,8	0,9
Расход воздуха							
Минимальный расход воздуха	м3/ч	445	400	553	650	987	1126
Максимальный расход воздуха	м3/ч	650	598	779	920	1342	1569
Акустические характеристики	-						
Уровень звуковой мощности при минимальном расходе воздуха ⁽⁴⁾	дБА	44	40	47	53	51	56
Уровень звуковой мощности при максимальном расходе воздуха ⁽⁴⁾	дБА	52	50	55	62	60	65

COMFAIR™ 4-трубная система	CWC	20	30	40	50	70	90
Холодопроизводительность ⁽¹⁾							
Холодопроизводительность	кВт	2,03	2,73	3,27	4,25	6,06	7,89
Явная производительность	кВт	1,77	2,25	2,88	3,45	5,01	6,24
Расход охлажденной воды	л/ч	358	489	647	809	1124	1369
Гидравлическое сопротивление	кПа	13,5	33	27	36,5	18,4	25
Теплопроизводительность ⁽³⁾	'			<u>'</u>		<u> </u>	
Теплопроизводительность	кВт	1,51	2,26	3,25	4,41	6,75	7,65
Расход горячей воды	л/ч	126	213	295	373	575	653
Гидравлическое сопротивление	кПа	2,6	9,4	34,9	38	27	25,6
Электрические характеристики				'			1
Электропитание	В/фаз/Гц			230/	1/50		
Потребляемая мощность двигателя	кВт	0,046	0,046	0,069	0,094	0,180	0,220
Номинальный ток	А	0,2	0,2	0,3	0,5	0,8	0,9
Расход воздуха				1			
Минимальный расход воздуха	м3/ч	445	400	553	650	987	1126
Максимальный расход воздуха	м3/ч	650	598	779	920	1342	1569
Акустические характеристики	'			·	1	1	I
Уровень звуковой мощности при минимальном расходе воздуха ⁽⁴⁾	дБА	41	40	47	53	52	56
Уровень звуковой мощности при максимальном расходе воздуха ⁽⁴⁾	дБА	51	50	55	62	60	64

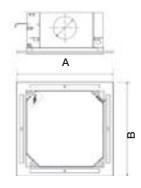
Приведены данные на максимальной скорости - 0 Па располагаемого статического давления.

Кассетные фанкойлы CWC участвуют в программе FC сертификации Eurovent (www.eurovent-certification.com)

⁽¹⁾ Макс. скорость: Режим охлаждения: Температура воды на входе: 7°С; температура воды на выходе: 12°С; температура воздуха на входе: 27 °С по сухому термометру, 19 °С по влажному термометру.

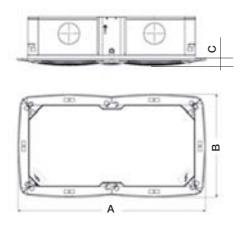

⁽²⁾ Макс. скорость: Режим нагрева: Температура воды на входе: 50 °C; расход воды соответствует расходу в режиме охлаждения; температура воздуха на входе: 20 °C

⁽³⁾ Макс. скорость: Режим нагрева: Температура воды на входе: 70 °C; температура воды на выходе: 60 °C; температура воздуха на входе: 20 °C

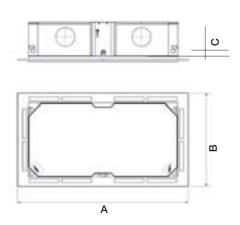

⁽⁴⁾ Уровень звуковой мощности дБА при 10 (-12) Вт

Габаритные размеры и масса

Типоразмеры 20, 30, 40 и 50



Пластиковый диффузор



Металлический диффузор

Типоразмеры 70 и 90

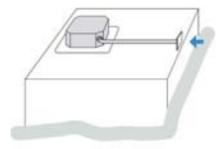
Пластиковый диффузор

Металлический диффузор

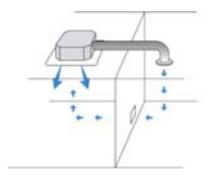
COMFAIR™	CWC	20	30	40	50	70	90
Корпус							
А	MM	575	575	575	575	1175	1178
В	MM	575	575	575	575	575	575
С	ММ	298	298	298	298	298	298
Масса	KF	21	22	23	24	43	45
Пластиковый диффузор							
А	MM	720	720	720	720	1320	1320
В	MM	720	720	720	720	720	720
С	ММ	48	48	48	48	48	48
Macca	KF	3	3	3	3	5	5
Металлический диффузор							
A	MM	619	619	619	619	1219	1219
В	ММ	619	619	619	619	619	619
С	MM	27	27	27	27	27	27
Масса	KГ	5	5	5	5	11	11

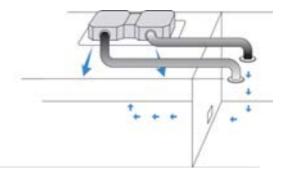
Основные принадлежности и компоненты

Регулирующие вентили



Поддон для сбора конденсата


Насос отвода конденсата

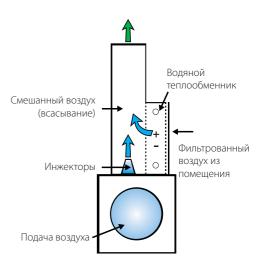

Электрический нагреватель

Комплект для подмешивания наружного воздуха (соединительный фланец и гибкая вставка)

Комплект для подачи воздуха в соседнее помещение (переходник 125/75 мм + соединительный фланец Ø 75 мм + гибкая вставка)

Inductair[™] • 0,4 → 2,7 kW

Конвекторы для 2-х или 4-трубных систем



Основные применения

- Офисные здания
- Больницы
- Жилые помещения

Преимущества оборудования

- Низкий уровень шума
- Модульность и гибкость
- Низкое потребление энергии

Общая информация

Конвекторы подходят для 2-х или 4-трубных применений с управлением производительностью по расходу воды или контролем подачи воздуха. Воздух всасывается через теплообменник и подается в помещение через инжекторы. Конвекторы не содержат движущихся частей и могут подавать наружный воздух высокоэффективным способом без необходимости применения приточной установки для наружного воздуха. Обозначение

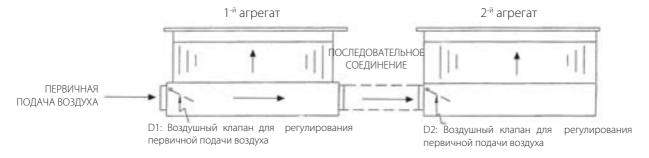
ML 64-2-L-6-580 ТИП: ML: Низкопрофильный конвектор для вертикальной установки, 2-трубная система **MLD:** Низкопрофильный конвектор для вертикальной установки, 4-трубная система ML **MG:** Конвектор для вертикальной установки, 2-трубная система MGD: Конвектор для вертикальной установки, 4-трубная система МН: Конвектор для горизонтальной установки, 2-трубная система **МНО:** Конвектор для горизонтальной установки, 4-трубная система Типоразмер:48/64/88/120 64 Плита инжектора: 1/2/3/4/5/6 2 Дополнительные принадлежности и функции: F: Фильтр типа Scott L: Фильтр типа Lintscreen S: Последовательное соединение W: Патрубок конденсата (14 мм) 6 Подключения Воздух/Вода: 1/3/4/6

Дополнительные принадлежности и функции

Высота: 580/440

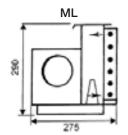
Опции F и L : воздушные фильтры

580

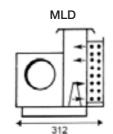

- Воздушный фильтр F: Моющийся полиуретановый фильтр толщиной 6 мм.
- Воздушный фильтр L : Моющийся фильтр из переплетенного алюминия

Опция W: патрубок отвода конденсата (14 мм)

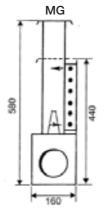
• Поддон для сбора конденсата (входит в стандартную поставку) может поставляться с патрубком диаметром 14 мм.

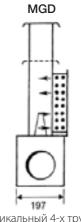

Опция S: последовательное соединение

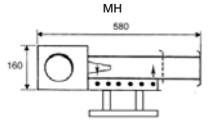
• Можно последовательно соединить два агрегата как показано на рисунке

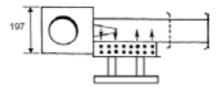


МОДЕЛИ МG, MH, ML	ХОЛО	ОДОПРОИЗВО	дительност	Ь (Вт)	ТЕПЛОПРОИЗВОДИТЕЛЬНОСТЬ (Вт)				
	Миним	мальная Максимальная		Миним	альная	Максимальная			
Типоразмер	2-трубная система	4-трубная система	2-трубная система	4-трубная система	2-трубная система	4-трубная система	2-трубная система	4-трубная система	
48	425	493	1200	1450	725	1000	2100	2000	
64	527	578	1500	1800	890	1200	2600	2400	
88	612	646	2000	2125	1000	1500	3450	3100	
120	714	731	2400	2700	1100	1900	4200	4250	

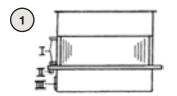

Габаритные размеры и масса

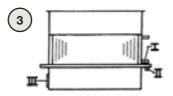

Низкопрофильный вертикальный 2-х трубная система

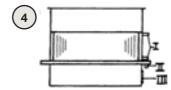

Низкопрофильный вертикальный 4-х трубная система

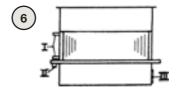

Вертикальный 2-х трубная система

Вертикальный 4-х трубная система

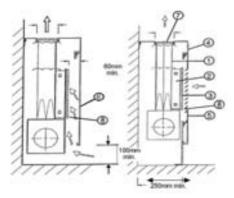

Горизонтальный 2-х трубная система




MHD


Горизонтальный 4-х трубная система

Варианты подключения воды/воздуха



I Подвод воды / II Отвод конденсата / III Подключение воздуховода

Варианты установки

НАПОЛЬНАЯ УСТАНОВКА

	•—	580
160	0	
	®	طلطر

Конвекторы МН ГОРИЗОНТАЛЬНАЯ УСТАНОВКА

	ОПИСАНИЕ							
1	Подача воздуха							
2	Теплообменник							
3	Фильтр							
4	Отгороженное место							
5	Съемная передняя панель с решеткой							
6	Съемная передняя панель							
7	Воздухораспределительная решетка							
8	Поддон для сбора конденсата							

Coandair™ • 1,3 → 5,6 kW

• 182 → 750 m³/h

Кассетные фанкойлы с эффектом флотации Coanda

Основные применения

- Небольшие коммерческие здания
- Офисы, гостиницы, школы
- Больницы

Преимущества оборудования

- Оптимальный комфорт для пользователя
- Низкий уровень шума
- Отличная архитектурная интеграция
- Электронно-коммутируемый вентилятор для НИЗКОГО потребления энергии: До 80% годовой экономии

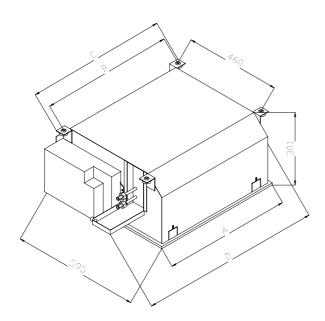
Общая информация

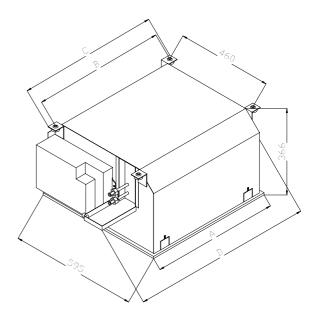
- Двухпоточный кассетный фанкойл с центробежным вентилятором разработанный для обеспечения наилучшего комфорта, в комплекте диффузор с эффектом флотации Coanda
- Исполнение SE (низкопрофильный, 301 мм) для установки в низком запотолочном пространстве (требуется насос для отвода конденсата)
- Исполнение НЕ (стандартный, 366 мм) применяется когда высота запотолочного прострастве позволяет отводить конденсат посредством гравитации
- Поставляются 2-трубные системы (3 типоразмера с 3-х или 4-рядными теплообменниками) и 4-трубные системы (3 типоразмера с 3-рядным теплообменником охлаждения и 1-рядным нагрева), правое или левое подсоединение водяных труб
- Стандартная конфигурация: 3-рядный теплообменник для 2-х трубной системы и 3+1 рядные теплообменники для 4-х трубной системы.
- Пример наименование модели: CD 06 2P 3 HE SX (Coandair™типоразмер 06 2-х трубная система 3-рядный теплообменник Стандартная версия – Левое подсоединение водяных труб)

Основные компоненты

- Вентиляторы протестированы на заводе, одно или два рабочих колеса в зависимости от типоразмера Вентиляторы имеют 5 скоростей, 3 из них подключены на заводе.
- Воздушный фильтр класса G3: толщина 15 мм, класс М
- Медный теплообменник с алюминиевым оребрением, патрубки диаметром 3/8"
- Теплообменники: 3-х или 4-рядные для 2-трубной системы и 3+1-рядные для 4-трубной системы
- Стандартный поддон для сбора конденсата (теплообменник и вентили)
- Диффузор: двухпоточный, окрашенный в белый цвет, из оцинкованной стали 10/10 мм

Дополнительные принадлежности и конфигурации

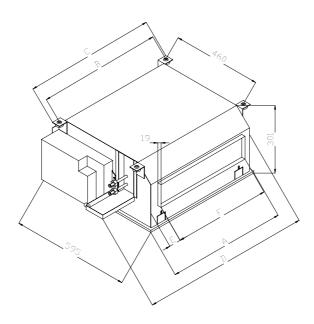

- Воздушный фильтр класса G2
- Круглые фланцы для подмешивания наружного воздуха (наружные размеры от 99 до 124 мм)
- Регуляторы подмешивания наружного воздуха (настройка от 50 до 200 Па)
- Насос отвода конденсата
- Электрические нагреватели (от 800 до 1500 Вт)
- 2-х и 3-ходовые регулирующие вентили, сервоприводы двухпозиционные напряжением 230 В или 24 В, трехпозиционные напряжением 24 В, с плавным регулированием 0-10 В напряжением 24 В
- Встроенные или дистанционные системы управления
- Электронно-коммутируемый вентилятор для низкого потребления энергии:


COANDAIR™	Скорость	CD	06-3	06-4	09-3	09-4	12-3	12-4
	1		182	182	210	210	220	220
	2		225	225	240	240	280	280
Расход воздуха	3	м3/ч	293	293	350	350	400	400
	4		447	447	480	480	600	600
	5	1	511	511	550	550	750	750
Колодопроизводительность ⁽¹⁾			011	011		1 000	7 00	100
<i>Солодопроизводительность</i>	4		0.00	1.01	4 4 4	1.01	1.00	1 00
	1		0,90	1,01	1,11	1,21	1,23	1,32
	2		1,07	1,21	1,24	1,36	1,51	1,64
Вная холодопроизводительность	3	кВт	1,31	1,5	1,68	1,88	2,04	2,24
	4		1,80	2,11	2,16	2,44	2,82	3,16
	5] [1,99	2,34	2,39	2,72	3,35	3,79
	1		1,33	1,53	1,66	1,86	1,88	2,05
	2	1	1,56	1,82	1,85	2,08	2,13	2,54
Полная холодопроизводительность	3	кВт	1,88	2,24	2,47	2,83	3,05	3,43
толная холодопроизводительность		וטא						
	4		2,50	3,06	3,10	3,61	4,13	4,75
	5		2,72	3,36	3,40	4,00	4,84	5,63
	1		229	264	286	319	323	353
	2]	268	313	318	357	395	436
Расход воды - Охлаждение	3	л/ч	324	385	424	486	524	590
	4]	430	526	533	621	710	816
	5		468	577	585	687	882	968
	1		4,79	8,18	3,43	5,12	5,34	7,68
	2		6,38	11,2	4,16	6,28	7,67	11,3
Гидравлическое сопротивление -								
 Охлаждение	3	кПа	9,01	16,2	7,04	11	12,8	19,5
• • • • • • • • • • • • • • • • • • • •	4		15,1	28,5	10,7	17,2	22,4	35,2
	5		17,6	33,8	12,7	20,7	29,8	48
Геплопроизводительность								
	1		1,53	1,68	1,85	1,99	2,02	2,13
-	2		1,81	2,01	2,08	2,25	2,5	2,67
еплопроизводительность 2-трубная	3	кВт	2,24	2,53	2,85	3,13	3,41	3,7
Система ⁽²⁾	4		3,09	3,57	3,67	4,1	4,74	5,25
		}						
	5		3,41	3,97	4,08	4,6	5,67	6,33
	1	кПа	4,08	6,9	2,94	4,36	4,5	6,5
Гидравлическое сопротивление – 2-трубная	2		5,42	9,4	3,57	5,35	6,5	9,5
система	3		7,65	13,7	6,03	9,4	11	16,6
CVICTOMA	4		12,8	24,2	9,17	14,7	19	30
	5		14,9	28,6	10,9	17,7	28,3	40,9
	1		1	-	1,33	_	1,54	-
	2	-	1,15	_	1,45	-	1,81	_
Теплопроизводительность 4-трубная		кВт				_		
система ⁽³⁾	3	KDI	1,36	-	1,86	-	2,3	-
	4		1,77	-	2,28	-	2,99	-
	5		1,87	-	2,48	-	3,45	-
	1		87,6	-	116	-	134	-
	2		100	-	127	-	159	-
Расход воды – 4-трубная система	3	л/ч	119	-	163	-	201	-
EX. Section 15.X s. Section 2012	4	'"	154	-	199	-	261	_
	5		163	_	217		301	 -
						-		_
	1		1,13	-	2,59	-	4,29	
	2		1,45	-	3,04	-	5,78	-
система	3	кПа	1,96	-	4,75	-	8,87	-
SPICT CHILD	4		3,15	-	6,86	-	14,3	-
	5		3,5	-	8,02	-	18,5	-
Электрические характеристики								
Электропитание		В/фаз/Гц			230/	/1/50		
	1	1 . 5	<u> </u>	.7		5,8	-	37
	2			2,7		9,8		9,6
Tornofingouse Marris Sar		n.		·		-		
Потребляемая мощность вентилятора	3	кВт				1,4		5,7
	4			5,2		4,3		3,3
	5		45	5,7	67	7,6	74	4,5
Акустические характеристики								
	1		3	5	3	34	2	27
	2	1		.0		39		34
/ровень звуковой мощности		nEV				15		38
ровень звуковом мощности		З ДБА						
	4	ļ ļ		4		50		18
	5	ı	_	6		54		53

Приведены данные на максимальной скорости - 0 Па располагаемого статического давления.
(1) Режим охлаждения: Температура воды на входе: 7°С; температура воды на входе: 12°С; температура воздуха на входе: 27 °С по сухому термометру, 19 °С по влажному термометру.
(2) Режим нагрева: Температура воды на входе: 50 °С; расход воды соответствует расходу в режиме охлаждения; температура воздуха на входе: 20°С
(3) Режим нагрева: Температура воды на входе: 70 °С; температура воды на входе: 60 °С; температура воздуха на входе: 20°С

Габаритные размеры и масса

Низкопрофильный (SE) и стандартный агрегат (HE)



COANDAIR™	CD	06	09	12				
Низкопрофильный (SE)								
А	MM	595	895	1195				
В	MM	616	916	1216				
С	MM	655	955	1255				
D	MM	779	1079	1379				
Macca	КГ	25	36	47				
Стандартный (НЕ)								
A	MM	595	895	1195				
В	MM	616	916	1216				
С	MM	655	955	1255				
D	MM	779	1079	1379				
Macca	КГ	25	36	47				

Габаритные размеры и масса

Канальное исполнение

COANDAIR™	CD	06	09	12				
Канальный								
А	MM	595	895	1195				
В	MM	616	916	1216				
С	MM	655	955	1255				
D	MM	779	1079	1379				
E	mm	40	95	125				
F	mm	485	675	915				
Масса	КГ	25	36	47				

AXIL™/EQUITHERM™ • 13 → 105 kW

Тепловентиляторы / Дестратификаторы

Основные применения

- Любые промышленные здания
- Любые большие площади

Преимущества оборудования

- Высокая теплопроизводительность
- Прочные теплообменники с длительным сроком службы
- Легкий и быстрый монтаж

Общая информация

Тепловентиляторы АХІС™ и дестратификаторы **EQUITHERM™** подходят для применения в любых промышленных зданиях или помещениях большой площади и имеют улучшенные рабочие характеристики благодаря передовому опыту конструирования.

Поставляются агрегаты следующих исполнений:

- AXIL : с водяным воздухонагревателем
- AXIL F: с водяным воздухоохладителем
- AXIL Z: с электрическим воздухонагревателем
- AXIL V: с нагревом паром и перегретой водой
- EQUITHERM: дестратификатор (без нагрева воздуха)

Предельные эксплуатационные характеристики:

- Горячая вода 120°С 16 бар для AXIL и AXIL F
- Пар и перегретая вода 210°C 20 бар

Основные компоненты

- Корпус изготовлен из оцинкованной стали окрашенной в серый цвет.
- Герметичные электродвигатели с питанием 230/400В 50 Гц, защитная решетка вентилятора
- Теплообменники из стальных или медных труб. Оребрение трубок из алюминия (толщина стенок стальных труб 1 мм, медных 0.7 мм; диаметр 22 мм)

Дополнительные принадлежности и конфигурации

- 1-скоростной электродвигатель с питанием от сети 230 В; 1 фаза; 50 Гц
- 3-скоростной 4/6/8-полюсный электродвигатель с питанием от сети 400 В; 3 фазы; 50 Гц
- 5-скоростной электродвигатель с питанием от сети 230 В: 1 фаза: 50 Гц
- 4 или 6-полюсный электродвигатель с питанием от сети 230-400 В; 3 фазы; 50 Гц
- Переключатель "звезда/треугольник"
- 3-скоростной переключатель
- 5-скоростной переключатель
- 5-скоростной переключатель с термостатом
- Автоматическое управление
- Автоматическое управление с ежедневным расписанием
- Автоматическое управление с цифровым таймером
- Двухпозиционное ручное управление

- Двухпозиционное ручное управление с термостатом
- Настенный кронштейн
- Жалюзи с регулируемым отклонением в двух плоскостях
- Конусный диффузор
- Диффузор для высоких помещений
- Воздухораспределитель для воздушнотепловой завесы
- Рециркуляционный воздуховод
- Рециркуляционный воздуховод со смесительной камерой
- Пленум рециркуляционного воздуха
- Рециркуляционный воздуховод со смесительной камерой
- Смесительная камера с фильтром и заслонкой с ручным регулированием
- Смесительная камера с клапанами
- Воздухозаборная решетка наружного воздуха

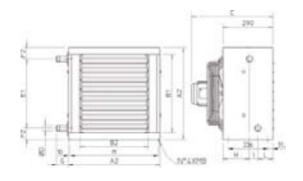
- Прямой воздуховод
- Прямой воздуховод для работы на наружном воздухе
- Козырек для защиты от атмосферных осадков
- Рециркуляционный воздуховод с фильтром
- Рециркуляционный воздуховод со смесительной камерой и фильтром
- Пленум рециркуляционного воздуха с фильтром
- Пленум рециркуляционного воздуха с клапаном и фильтром
- Смесительная камера с фильтром и заслонкой с ручным регулированием
- Смесительная камера с клапанами и фильтром
- Диффузор с поворотом на 90°
- Дополнительная защитная решетка

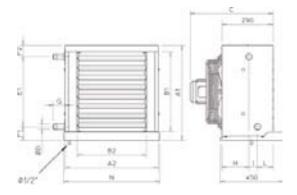
AXIL™		402 -4	403 -4	502 -4	503 -4	602 -4	603-6	902 -6	903 -6
Технические характеристики									
Количество полюсов двигателя		4/6	4/6	4/6	4/6	4/6	6/8	6/8	6/8
Скорость вентилятора	об/мин	1350/950	1350/950	1350/950	1350/950	1350/950	950/700	950/700	950/700
Гидравлические соединения		1"	1"	1"	1"	1"1/4	1"1/4	1"1/2	1"1/2
Теплопроизводительность							'	'	•
Теплопроизводительность ⁽¹⁾	кВт	15,0/12,1	20,4/16,2	25,2/20,9	34,8/27,2	42,3/34,1	47,3/41,3	73,1/63,1	96,0/82,0
Расход воздуха	м3/ч	2300/1600	2200/1500	3950/2550	3800/2500	6500/4500	4350/3600	9500/7200	9100/690
Уровень звукового давления на расстоянии 5 м	дБА	59/51	59/51	64/54	64/54	69/60	60/52	68/62	68/62
Параметры воздушной струи при горизог	нтальной	і подаче	'			<u>'</u>	'	'	
Высота расположения вентилятора (высокая скорость)	М	3 - 4	3 - 4	3,5 - 4,5	3,5 - 4,5	4,5 - 6	4 - 5,5	4 - 6	4 - 6
Высота расположения вентилятора (низкая скорость)	М	2,5 - 3,5	2,5 - 3,5	3 - 4	3 - 4	4 - 5,5	3,5 - 5	3,5 - 5,5	3,5 - 5,5
Дальность действия струи (высокая скорость)	М	11	10	16	15	25	16	28	25
Дальность действия струи (низкая скорость)	М	7	,5	12	10	18	13	21	18
Параметры воздушной струи при вертика	альной п	одаче							
Макс. высота расположения вентилятора	М	4,5	4,5	5,5	5,5	7	6	11	11
(высокая скорость)		,	,		,				
Макс. высота расположения вентилятора	М	3,5	3,5	4,5	4,5	6	5,5	9	9
(низкая скорость) Площадь действия (высокая скорость)	m ²	60	58	80	75	145	100	200	180
					-				
Площадь действия (низкая скорость)	m ²	45	43	60	55	125	80	160	140

⁽¹⁾ Температура рециркуляционного воздуха: 12°С, температура горячей воды на входе/выходе: 90/70°С

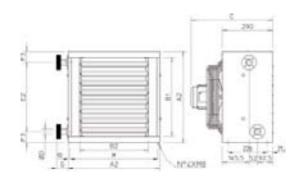
AXIL™F	403-6	503-6	603-6	903-6	
Технические характеристики					
Количество полюсов двигателя		6	6	8	8
Скорость вентилятора	об/мин	950	950	700	700
Полная холодопроизводительность ⁽¹⁾	кВт	4,1	7,2	11,1	19,8
Расход воздуха	м3/ч	1600	2500	3600	6900
Уровень звукового давления на расстоянии 5 м	дБА	51	54	52	62
Параметры воздушной струи при горизонтал	ьной под	аче			
Высота	М	2,5 - 3,5	3 - 4	4 - 5,5	3,5 - 5,5
Воздушная струя	М	7,5	10	13	18

⁽¹⁾ Температура рециркуляционного воздуха: 26°С, температура охлажденной воды на входе/выходе: 7/12°С

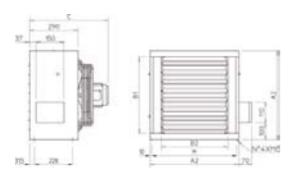

AXIL™ Z		414	524	639				
Технические характеристики								
Количество полюсов двигателя		6	6	6				
Скорость вентилятора	об/мин	900	900	900				
Теплопроизводительность	кВт	14	24	39				
Расход воздуха	м3/ч	1600	2550	4500				
Мощность электродвигателя	Вт	50	120	120				
Уровень звукового давления на расстоянии 5 м	дБА	51	54	60				

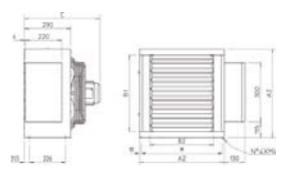

AXIL™V		402-4	502-4	602-4	902-6
Технические характеристики					
Количество полюсов двигателя		4/6	4/6	4/6	6/8
Скорость вентилятора	об/мин	1350/950	1350/950	1350/950	950/700
Теплопроизводительность 2-рядного теплообменника ⁽¹⁾	кВт	21,4/18,2	34,8/30	62,3/47,8	101,7/91,8
Расход воздуха 2-рядный теплообменник	м3/ч	2100/1400	3600/2400	6300/4100	9200/7000
Уровень звукового давления на расстоянии 5 м	дБА	59/51	64/54	69/60	68/62
Параметры воздушной струи при горизонталь	ной пода	аче			
Высота расположения вентилятора (высокая скорость)	М	3 - 4	3,5 - 4,5	4,5 - 6	4 - 6
Высота расположения вентилятора (низкая скорость)	М	2,5 - 3,5	3 - 4	4 - 5,5	3,5 - 5
Дальность действия струи (высокая скорость)	М	11	16	25	28
Дальность действия струи (низкая скорость)	М	7,5	12	18	21

⁽¹⁾ Пар: Давление 8 бар


Габаритные размеры и масса

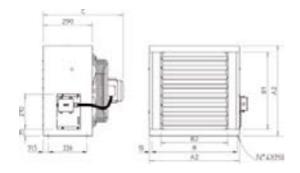
AXIL™ AXIL™F


AXIL™ V


			402 / 403	502 / 503	602 / 603	902 / 903
A1		MM	537	647	754	1022
A2		MM	526	636	743	1011
B1		MM	450	550	641	885
B2		MM	394	500	640	875
С		MM	468	468	468	576
D		MM	1»	1»	1» 1/4	1» 1/2
E1		MM	397	467	588	832
E2		MM	330	467	588	832
F1		MM	75,5	80,5	88,5	100,5
F2		MM	64,5	69,5	77,5	89,5
F3		MM	98	69,5	77,5	89,5
G		MM	69	69	60	91,5
Н		MM	154	154	154	150
Л		MM	48	48	48	50
L		MM	88	88	88	90
М		MM	506	616	723	991
N		MM	542	650	758	1026
Гидравлическое						
Сопоружание	2R	Л	1,4	2,1	3,1	6,1
Содержание	3R	Л	1,9	2,9	4,3	8,4
Macca	2R	KГ	22	25	34	81
Iviacca	3R	Kſ	23	28	39	90
Пар						
Содержание		Л	2,5	4,5	5,9	12
Масса		KГ	30	38	51	92

Габаритные размеры и масса (продолжение)

$\mathsf{AXIL}^\mathsf{\scriptscriptstyle\mathsf{TM}}\,\mathsf{Z}$



Савтоматикой

		414	524	639
A2	MM	526	636	743
B1	MM	450	550	641
B2	MM	394	500	610
С	MM	468	468	468
M	MM	506	616	723
Масса без автоматики	КГ	22	30	38
Масса с автоматикой	КГ	24	32	40

EQUITHERM™

		400	500	600	900
A2	MM	526	636	743	1011
B1	MM	450	550	641	885
B2	MM	394	500	610	875
С	MM	468	468	468	576
M	MM	506	616	723	991
Macca	КГ	14	20	25	42

Miniair™ • 2 → 44 kW

• 500 \rightarrow 7400 m³/h

Компактные воздухообрабатывающие агрегаты

Основные применения

- Любые коммерческие здания
- Небольшие промышленные здания
- Офисы
- Отели

Преимущества оборудования

- Легкость установки и обслуживания
- Фильтрует, нагревает, охлаждает и увлажняет воздух как центральный кондиционер
- Большой выбор конфигураций и опций

Общая информация

Компактные воздухообрабатывающие агрегаты имеют 7 типоразмеров, поставляются различных исполнений: 2-х и 4-х трубная система или 2-х трубная система с электрическим воздухонагревателем.

Основные компоненты

- Окрашенная стальная рама цвета RAL 9002
- Панели с двойными стенками, внутри оцинкованный стальной лист, снаружи окрашенный стальной лист цвета RAL 9002 Тепловая и звукоизоляция из минеральной ваты толщиной 10 мм (типоразмеры 10 40) или 20 мм (типоразмеры 50 и 60)
- Доступ к вентилятору, теплообменникам и фильтру осуществляется через съемные нижние панели
- Поддон для сбора конденсата из оцинкованной стали имеет специальную систему крепления для легкого снятия; боковой отвод конденсата
- Многоскоростной центробежный вентилятор двухстороннего всасывания с непосредственным приводом (опционально поставляются двигатели с частотным регулированием), установлен на виброизоляторах
- Внешняя клеммная коробка с релейными платами
- Синтетический воздушный фильтр класса G4 установлен на входе воздуха, доступ к фильтру снизу или сбоку

Основные исполнения агрегатов:

- 2-трубная система (2, 4 или 6-рядные теплообменники)
- 2-трубная система с водяным теплообменником (4 или 6-рядный) и электрический воздухонагреватель (макс. 2 ступени)
- 2-трубная система с водяным теплообменником (4 или 6-рядный) и каплеуловителем
- 4-трубная система (4+2-рядные или 6+2-рядные теплообменники)

Дополнительные принадлежности и конфигурации

- Секция карманного фильтра класса F6
- Секция смешения с двумя клапанами
- Испарительный увлажнитель с каплеуловителем
- Секция водяного нагрева с 2-рядным теплообменником
- Секция электрического нагрева (1, 2, 3 или 4 ступени мощности)
- Рециркуляционные и приточные решетки
- Регулирующие клапаны
- Рециркуляционный и приточный пленумы
- Приточный пленум с круглыми фланцами
- Шумоглушитель на рециркуляционном или приточном воздухе
- Регулирование скорости вентилятора
- Пульт управления
- Реле загрязнения фильтра
- Термостат защиты от замораживания
- Сервопривод клапана 230 В
- Устройства с плавным регулированием
- 3-ходовые регулирующие вентили

MINIAIR™				10	20	25	30	40	50	60
Расход воздух	a		м3/ч	1040	2150	2740	3360	3950	5070	6450
Располагаемо	е давл	ение	Па	150	150	150	150	150	150	150
Уровень звукс	рвого д	цавления на расстоянии 1 м ⁽¹⁾	дБА	51	55	55	57	58	57	59
Мощность на	валу		Вт	147	350	2 x 350	2 x 350	2 x 350	2 x 420	3 x 420
Количество по	олюсо	В		4	4	4	4	4	4	4
Скорости вен	тилятс	ра		3	3	3	3	3	3	3
Максимальны	й ток		A	1,9	3	2 x 3,0	2 x 3,0	2 x 3,0	2 x 3,8	3 x 3,8
Класс защиты							мин. IP20			
Класс изоляці	1И			В	F	F	F	F	В	В
Электропитан	ие		В/фаз/Гц				230/1/50			
		Полная мощность	кВт	9,5	18,5	24,2	27,7	33,3	34,9	41,2
	2R	Расход воды	м3/ч	0,84	1,63	2,13	2,44	2,93	3,07	3,63
		Гидравлическое сопротивление	кПа	22	23	21	27	26	5070 150 57 2 x 420 4 3 2 x 3,8 B	17
		Полная мощность	кВт	13,8	27,7	35,8	42,5	50,3	58,1	71,3
Нагрев ⁽³⁾	4R	Расход воды	м3/ч	1,21	2,44	3,15	3,74	4,43	5,12	6,28
		Гидравлическое сопротивление	кПа	21	29	23	32	26	19	23
		Полная мощность	кВт	14,9	30,5	39,1	47,1	55,7	67	83,3
	6R	Расход воды	м3/ч	1,31	2,68	3,44	4,14	4,9	5,89	7,33
		Гидравлическое сопротивление	кПа	22	26	21	30	23	18	19
		Полная мощность	кВт	6	12,1	15,7	18,2	21,6	24,1	32,5
	4R	Явная производительность	кВт	4,5	8,9	11,6	13,6	16,1	19,7	25,6
	40	Расход воды	м3/ч	1,04	2,07	2,69	3,12	3,69	4,13	5,57
Охлаждение		Гидравлическое сопротивление	кПа	21	29	23	32	26	19	23
(2)		Полная мощность	кВт	7,1	14,3	18,5	21,9	26,2	34,3	42,1
	6R	Явная производительность	кВт	5	10,2	13,2	15,7	18,7	24,6	30,6
	UN	Расход воды	м3/ч	1,21	2,46	3,17	3,76	4,49	5,88	7,21
		Гидравлическое сопротивление	кПа	26	29	24	33	25	23	24

Приведены данные на максимальной скорости, 150 Па располагаемого статического давления.

- (1) Звуковое давление измерено на расстоянии 1 м от агрегата в условиях свободного пространства
- (2) Температура воздуха на входе 27 °C по сухому термометру, 19 °C по влажному термометру; температура воды на входе/выходе 7/12 °C Данные приведены на максимальной скорости.
- (3) Температура воздуха на входе 20°С, влажность 50 %; температура воды на входе/выходе 70/60 °С Данные приведены на максимальной скорости.

MINIAIR™		10	20	25	30	40	50	60
A	MM	850	850	850	850	850	960	960
В	MM	710	1070	1400	1400	1680	1780	2000
С	MM	390	390	390	390	390	480	480
Ø 2R		3/4"	3/4"	3/4"	3/4"	1"	1"	1"
Ø 4R		3/4"	3/4"	1"	1"	1"	1"	1" 1/4
Ø 6R		3/4"	1"	1"	1"	1" 1/4	1" 1/4	1" 1/4
Ø1	MM	20	20	20	20	20	20	20
X1	MM	240	306	240	240	306	306	306
Y1	MM	216	270	216	270	270	270	270
X2	MM	-	-	318	318	418	435	-
X3	MM	-	-	-	-	-	-	285
A1	MM	670	1030	1360	1360	1640	1720	1940
A2	MM	350	350	350	350	350	420	420
X	MM	235	382	301	301	325	366	256
Υ	MM	136	82	136	82	82	160	160
Масса	КГ	52 ÷ 60	60 ÷ 70	75 ÷ 88	78 ÷ 90	96 ÷ 110	101 ÷ 120	120 ÷ 140

Miniair™ + · 3 → 28 kW

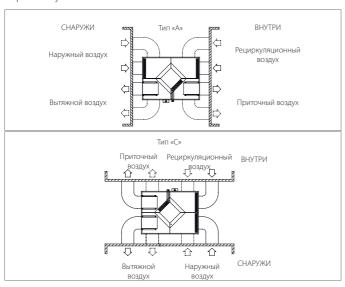
• 300 \rightarrow 4000 m³/h

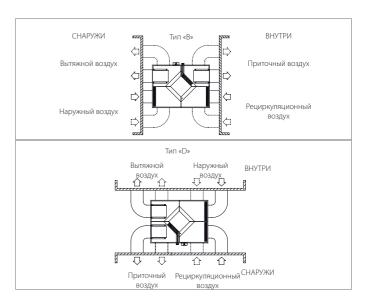
Воздухообрабатывающие агрегаты с теплоутилизацией

LIMON .

Основные применения

• Любые коммерческие или жилые здания


Преимущества оборудования


- Энергосбережение и воздухообмен
- Легкость установки и обслуживания
- Интеграция с традиционными системами нагрева
- или охлаждения или независимая работа
- Большой выбор конфигураций и опций
- Высокоэффективные воздушные фильтры, байпас для естественного охлаждения и встроенная автоматика

Общая информация

Компактные воздухообрабатывающие агрегаты с пластинчатым теплоутилизатором, вертикальная или горизонтальная конфигурация, 8 типоразмеров от 200 до $4600 \text{ м}^3/\text{ч}$ или 5 типоразмеров со встроенным байпасом от $500 \text{ до } 3700 \text{ м}^3/\text{ч}$.

Варианты установки:

Основные компоненты

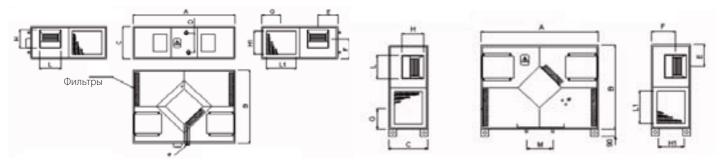
- Корпус из окрашенной листовой стали
- Полностью съемные окрашенные панели
- Тепловая и акустическая изоляция из минеральной ваты толщиной 10 мм (до типоразмера 10) или 20 мм (для остальных типоразмеров)
- Поддон для сбора конденсата из нержавеющий стали расположен под теплообменниками охлаждения и нагрева
- Многоскоростной центробежный вентилятор двухстороннего всасывания с непосредственным приводом (опционально поставляются двигатели с частотным регулированием), установлен на виброизоляторах
- Воздушный синтетический фильтр класса G4
- Высокоэффективный перекрестный рекуператор с алюминиевыми пластинами с дополнительной герметизацией

Дополнительные принадлежности и конфигурации

• НОВЫЕ конфигурации:

- * Установка с теплоутилизатором и байпасом для естественного охлаждения, высокоэффективные воздушные фильтры (G4, F6, F7, F8) и встроенная автоматика
- * Установка с теплоутилизатором и высокоэффективными воздушными фильтрами (G4, F6, F7, F8) и встроенной автоматикой
- Встроенный водяной воздухонагреватель
- Электрический воздухонагреватель (1 ступень мощности)
- Секция водяного охлаждения
- Воздушные клапаны на воздухозаборе и вытяжке

- Секция смешивания с тремя клапанами
- Круглые фланцы для подключения воздуховодов и гибкие
- Крыша для наружной установки
- Секция карманного фильтра класса F6
- Реле загрязнения фильтра
- Термостат защиты от замораживания
- Сервопривод 230В воздушного клапана
- Двигатели с инверторным управлением
- Пульт управления
- Устройства с плавным регулированием
- 3-ходовые регулирующие вентили


MINIAIR™+			03	06	10	14	19	25	30	40	
Расход воздуха		м3/ч	300	500	1000	1400	1900	2500	3200	4000	
Располагаемое дав	вление	Па	100	100	90	140	120	110	170	170	
Уровень звукового	давления на расстоянии 1 м (1)	дБА	51	51	53	60	59	56	59	62	
Мощность на валу		Вт	2 x 60	2 x 60	2 x 147	2 x 350	2 x 350	2 x 350	2 x 550	2 x 750	
Количество полюс	ОВ		1,2	1,4	3	5,8	6,2	6	11,4	6,2	
Скорости вентиля	гора		3								
Класс защиты			Min 20								
Класс изоляции						МИІ	н. В				
Электропитание		В/фаз/Гц				230/1/50				400/3/50	
Эффективность тег	плоутилизатора	%	52,0	56,1	53,4	52,1	51,8	57,6	55,6		
Мощность теплоут	илизации	кВт	1,4	2,6	4,6	6,2	8,4	12,3	15,3	19,4	
	Мощность	кВт	2	4	4,5	6	9	12	12	12	
Электрический	Электропитание	В/фаз/Гц	230/	1/50			400/	3/50			
нагреватель	Потребляемый ток	А	8,7	17,4	6,5	8,7	13	17,3	17,3	17,3	
	Падение давления	Па	5	5	6	6	8	6	9	13	
	Макс. мощность	кВт			11,3	16,3	20,4	29,7	35,1	44,3	
Водяной	Температура приточного воздуха	°C	не поста	PULLOTOR	40,5	41,5	39	42,2	39,6	39,9	
воздухонагреватель	Аэродинамическое сопротивление	Па	HETIOCIA	אטואפוכא	65	64	85	62	85	92	
	Гидравлическое сопротивление	кПа			13	31	18	20	27	49	
Водяной	Макс. мощность	кВт	2,5	3,8	6,8	9,6	13,1	19	22	28,1	
воздухоохладитель	Аэродинамическое сопротивление	Па	23	67	74	82	90	66	100	98	
(3)	Гидравлическое сопротивление	кПа	8	13	13	13	16	21	29	33	

- (1) Звуковое давление измерено на расстоянии 1 м от агрегата в условиях свободного пространства
- (2) Температура воздуха на входе 8°С; температура воды на входе/выходе 70/60°С (3) Температура воздуха на входе 29 °С, влажность 60 %; температура воды на входе/выходе 7/12°С

Габаритные размеры и масса

Горизонтальная конфигурация

Вертикальная конфигурация

MINIAIR™ +		03	06	10	14	19	25	30	40
A	MM	990	990	1150	1300	1450	1700	1700	1700
В	MM	750	750	860	900	900	1230	1230	1230
С	MM	270	270	385	410	470	490	530	630
D	MM		-	230	230	280	305	305	405
L	MM	162	162	240	240	240	306	339	339
Н	MM	100	100	218	270	270	270	297	297
L1	MM	275	275	330	337	337	502	502	502
H1	MM	153	153	267	267	327	347	387	487
E	MM	120	197	225	241	230	323	308	308
F	MM	135	171	238	224	284	304	331	431
G	MM	197	197	225	241	241	323	323	323
M	MM	100	100	100	100	145	100	100	100
Ø		-	-			G 3	3/4"		
Macca	КГ	39	41	68	91	99	140	155	179

23LX • 1000 - 100 000 m³/h

Центральные кондиционеры для обработки воздуха (Модульные приточно-вытяжные агрегаты)

Основные применения

- Торговые здания
- Промышленные предприятия
- Объекты здравоохранения

Преимущества оборудования?

- Модульный агрегат
- Гибкость применений
- Оборудование сертифицировано

Общая информация

Центральные кондиционеры 23LX Lennox выполняют все виды обработки воздуха, такие как вентиляция, очищение, нагрев, охлаждение, увлажнение, осушка и утилизация теплоты.

Модельный ряд центральных кондиционеров 23LX Lennox доступен в 44 типоразмерах, с диапазоном расхода воздуха от 1 000 до 100 000 м3/ч и свободным напором вентилятора до 2500 Па.

По отдельному запросу возможно изготовление установок, которые могут работать с расходом воздуха и давлением, выходящим за рамки рабочего диапазона.

Широкий модельный ряд установок позволяет осуществлять оптимальный выбор скорости воздуха и сечения установки.

Центральные кондиционеры 23LX Lennox имеют 28 основных и 16 дополнительных типоразмеров. Размеры фронтальных сечений определяются кратным числу 160 мм. При необходимости, дополнительные типоразмеры могут иметь четко прямоугольную форму за счет уменьшения высоты и увеличения ширины установки.

Конструкция

- - Рама и панели установок 23LX разработаны с учетом особого внимания к свойствам теплоизоляции и механическим повреждениям.
 - Корпус состоит из алюминиевой рамы и панелей многослойного типа, толщиной 50 мм, в качестве изоляционного материала применяется пенополиуретан (45 кг/м3) или минеральная вата (90 кг/м3).
 - Внутренняя поверхность установки абсолютно гладкая, не видно винтов на внутренней стороне панелей.
 - Прокладка между панелями обеспечивает непроницаемость воздуха, устраняет эффект тепловых мостиков, устраняет утечку воздуха и предотвращает скапливание пыли.
 - Трех-ходовой угловой стык изготовлен из усиленного нейлона
 - Классификация конструкции в соответствии со стандартами EN 1886:

Механическая стойкость корпуса: D1

Герметичность корпуса: L1/L2

Утечки байпаса фильтра: F9

Класс теплопередачи корпуса: Т2

Термические мостики: ТВЗ (стандарт), ТВ2 как опция

• Основная рама: основная рама выполнена из оцинкованной стали, толщиной 2,5 мм и имеет «С» - образную форму, она непрерывна по всему периметру блока и имеет подъемные отверстия диаметром 2", к которым подходят стальные трубки.

Опции и возможные конфигурации

• Теплообменники:

Водяные, фреоновые, паровые и электрические теплообменники, размещаются в секциях на выдвижных направляющих. ARI теплообменники по запросу.

Стандартные теплообменники испытывают путем погружения в воду при давлении 30 бар.

- Электрические калориферы оборудованы защитным термостатом.
- Секции теплоутилизации, роторные, пластинчатые рекуператоры, рекуператоры с промежуточным теплообменником, тепловые трубы.
- Дренажные поддоны: дренажные поддоны для сбора конденсата выполнены из алюминия или нержавеющей стали, обеспечивают полный слив жидкости.

Вентиляторные секции состоят из вентилятора, эл. мотора, салазок для двигателя, клино-ременной передачи, виброоснований, гибких вставок на выходе вентилятора, кабеля заземления вентилятора и опорной рамы двигателя.

Для вентилятора с прямым приводом клиноременная передача не требуется, так как двигатель и вентилятор имеют одну общую ось. Частотный преобразователь можно использовать для регулирования скорости вращения двигателя.

Вентиляторы двухстороннего всасывания серии DIN R20 могут быть:

- с лопатками загнутыми вперед
- с лопатками загнутыми назад
- с аэродинамическими лопатками загнутыми назад высокой эффективности.

Трехфазные асинхронные электродвигатели, замкнутой конструкции с внешним вентилятором, с короткозамкнутым ротором, горизонтальным валом типа ВЗ, класс защиты IP55, класс изоляции F, соответствуют нормам IEC, CEI и UNEL.

По запросу двигатель может быть с частотным преобразователем, однофазным, термостойким, с термозащитой, с нагревательным элементом.

Клино-ременая передача включает в себя V- образные ремни и шкивы типов SPZ, SPA, SPB и SPC

Вентиляторы до размера 400 оборудованы резиновыми виброопорами, все остальные типоразмеры – пружинными опорами.

Шумоглушители, стандартные или с покрытием

- Устройства безопасности: двигатели вентиляторов оснащены ремнями, с ручным регулированием натяжения. Клино-ременая передача состоит из V-образных ремней и шкивов
- Пустые секции
- Секции смешения с наружным и внутренним клапанами
- 3-х клапанные секции смешения с наружными и внутренними клапанами
- Крыша (для установок наружного исполнения используется крыша с оцинкованным покрытием, углы крыши сглажены и закрыты пластиковыми вставками)
- Инспекционные дверцы имеют нейлоновые петли и ручки, дополнительно могут поставляться с внутренними ручками и замками. Дверцы могут быть оснащены двойными смотровыми окнами и лампочками.
- Клапаны: алюминиевые с нейлоновыми механическими шестеренками, могут быть как с ручным регулированием, так и с электроприводами.
- Гибкие вставки, имеют DIN сертификат

Фильтры:

Панельные фильтры средней эффективности

Карманные фильтры средней эффективности (мягкие или твердые)

Рулонные фильтры средней эффективности

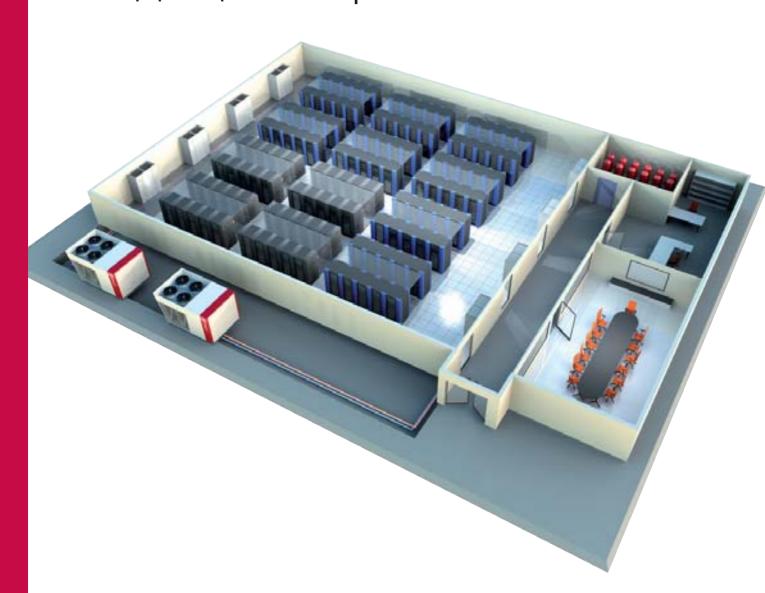
Карманные фильтры высокой эффективности (мягкие или твердые)

Жесткие карманные фильтры высокой эффективности

НЕРА фильтры

Угольные фильтры

- Каплеуловители, из различных материалов
- Увлажнители: сотовые, с рециркуляционным насосом, паровые, атомайзеры, камеры орошения (однорядные или двухрядные).



Прецизионные

кондиционеры

Providing IT climate technology

134

•	Кондиционеры для телекоммуникационных систем	
	@DNOVA TM	
	2,5 -25 κΒτ	128
•	Прецизионные кондиционеры	
	INNOV@ TM	
	6 - 249 кВт	130
•	Прецизионные кондиционеры с плавным регулированием	
	производительности	

INNOV@™ ENERGY INVERTER

3 - 63 кВт

@DNOVA™ • 2,5 → 25 kW

Кондиционер для телекоммуникационных систем

Основные применения

• Телекоммуникационные станции

Преимущества оборудования

- Энергоэффективность
- Надежность
- Высокое качество

Общая информация

Агрегаты **@DNOVA™** предназначены для **внутренней или наружной установки на телекоммуникационных станциях.** Они применяются для точного и надежного поддержания заданного микроклимата в технологических помещениях с повышенной тепловой нагрузкой.

Простой и быстрый монтаж агрегатов THN и THX: система «подключи и работай», требуется только закрепить агрегат при помощи болтов и подключить электропитание.

Доступ к внутренним компонентам с лицевой стороны агрегата облегчает техническое обслуживание. Дополнительного доступа для проведения технического обслуживания не требуется.

Поставляются агрегаты следующих исполнений

- ТНХ: моноблочный агрегат для наружного настенного монтажа
- THN: моноблочный агрегат для внутреннего настенного монтажа
- THS: сплит-система для потолочного или настенного монтажа

Основные компоненты

Каркас изготовлен из усиленного оцинкованного стального листа. Наружные панели выполнены из алюминиевого сплава 5005 (модель ТНХ) или из окрашенного (RAL 9002) оцинкованного стального листа (модели ТНN, THS)

Холодильный контур с паянными соединениями и компоненты соответствуют директиве PED 97/23. Применяются ротационные или спиральные компрессоры работающие на хладагенте R407C или R134a.

В агрегатах **@DNOVA™** (модели ТНХ, ТНN) применяются центробежные вентиляторы одностороннего всасывания с загнутыми назад лопатками рабочего колеса.

Испаритель состоит из медных труб с алюминиевым оребрением. Поддон для сбора конденсата изготовлен из оцинкованной стали (в качестве опции поставляются поддоны из нержавеющей стали).

Поддон для сбора конденсата изготовлен из оцинкованной стали (в качестве опции поставляются поддоны из нержавеющей стали).

Осевые вентиляторы конденсатора (модели THX, THS) имеют 6-полюсные двигатели для ограничения уровня шума.

Система управления

В стандартной комплектации агрегаты **@DNOVA™** оснащены микропроцессорным контроллером с ЖК-дисплеем 4х20.

Дополнительные принадлежности и функции

- Аварийное естественное охлаждение
- Два источника электропитания
- Сухие контакты для аварийных сигналов
- Конденсатор с эпоксидным покрытием оребрения
- Высокое соотношение явной мощности к полной
- Электронный терморегулирующий вентиль

- Фильтр EU4 + датчик загрязнения
- Естественное охлаждение
- Боковой забор воздуха для естественного охлаждения
- Расширенный микропроцессорный контроллер
- Электронное управление оборотами вентилятора конденсатора
- Связь по протоколам ModBus, TCP/IP, Bacnet ...

@DNOVA™ ВОЗДУШНОЕ ОХЛАЖДЕНИЕ (МОНОБЛОК ВНУТРЕННЕЙ УСТАНОВКИ) ВЕРХНЯЯ/НИЖНЯЯ/ ЗАМЕЩАЮЩАЯ ПОДАЧА ВОЗДУХА	THN	0045	0056	0073	0090	0105	0120	0150	0170	0180	0200	0220	0250
Полная холодопроизводительность (1):	кВт	4,4	5,6	7,1	9,0	10,9	11,9	15,0	17,2	17,1	20,0	22,0	24,5
Явная холодопроизводительность	кВт	4,4	5,5	7,1	9,0	10,9	11,9	15,0	16,9	17,1	20,0	22,0	24,5
Отношение явной мощности к полной		1	0,99	1	1	1	1	1	0,98	1	1	1	1
Количество компрессоров ⁽²⁾	спирал.	1	1	1	1	1	1	1	1	1	1	1	1
Расход воздуха	м3/ч	1450	2100	2100	3020	3020	3020	3800	3800	6500	6500	6500	6500
Уровень звуковой мощности	дБА	69	69	69	72	72	72	72	72	80	80	81	82
Уровень звукового давления на расстоянии 10 м	дБА	41	41	41	44	44	44	44	44	-	-	-	-
Высота	MM	1850	1850	1850	1850	1850	1850	1850	1850	2050	2050	2050	2050
Ширина	MM	800	800	800	1000	1000	1000	1160	1160	1500	1500	1500	1500
Глубина	MM	550	550	550	550	550	550	550	550	800	800	800	800

⁽¹⁾ Температура/влажность внутреннего воздуха 27°С/ 40%. Температура наружного воздуха 35°С.

⁽²⁾ Ротационный компрессор для модели ТНN0045

@DNOVA™ ВОЗДУШНОЕ ОХЛАЖДЕНИЕ (МОНОБЛОК НАРУЖНОЙ УСТАНОВКИ) ВЕРХНЯЯ ПОДАЧА ВОЗДУХА ⁽¹⁾	THX	0045	0056	0073	0090	0105	0120	0145	0902	1102	1302
Полная холодопроизводительность (2)	кВт	4,5	5,6	7,1	8,9	10,2	11,8	14,1	9,1	10,8	13,2
Явная холодопроизводительность	кВт	4,5	5,5	6,8	8,9	10,2	11,8	14,1	8,7	9,7	11,7
Отношение явной мощности к полной		1	0,99	0,96	1	1	1	1	0,96	0,9	0,89
Количество компрессоров (3)	спирал.	1	1	1	1	1	1	1	2	2	2
Расход воздуха	м3/ч	1450	1450	2150	3020	3020	3020	3020	2800	2800	2800
Уровень звуковой мощности	дБА	69	70	70	71	71	71	74	72	72	72
Уровень звукового давления на расстоянии 10 м	дБА	42	43	43	44	44	44	46	45	45	45
Высота	MM	1580	1580	1580	1630	1630	1790	1790	1790	1790	1790
Ширина	MM	804	804	804	1000	1000	1000	1000	1000	1000	1000
Глубина	MM	498	498	498	596	596	596	596	596	596	596

⁽¹⁾ Нижняя подача воздуха по запросу для некоторых моделей

⁽³⁾ Ротационный компрессор для модели ТНХ0045

@DNOVA™ ВОЗДУШНОЕ ОХЛАЖДЕНИЕ (СПЛИТ СИСТЕМА) НАСТЕННАЯ/ПОДПОТОЛОЧНАЯ УСТАНОВКА	THS	0025	0035	0045	0056	0073	0090	0105	0120	0145
Полная холодопроизводительность ^{(1):}	кВт	2,6	3,6	4,5	5,6	7,2	9,0	10,4	12,0	14,3
Явная холодопроизводительность	кВт	2,6	3,6	4,5	5,5	7,2	8,9	10,1	12,0	13,3
Отношение явной мощности к полной		1	1	1	0,99	1	0,99	0,97	1	0,93
Количество компрессоров ⁽²⁾	спирал.	1	1	1	1	1	1	1	1	1
Расход воздуха через испаритель	м3/ч	950	930	1400	1400	2200	2200	2200	3200	3200
Расход воздуха через конденсатор	м3/ч	2250	2050	3450	3350	3350	5100	5100	5580	5450
Уровень звуковой мощности	дБА	68	68	69	69	70	70	73	71	71
Уровень звукового давления на расстоянии 10 м	дБА	41	41	41	41	42	42	45	43	43
Внутренний блок										
Высота	MM	350	350	350	350	350	350	350	400	400
Ширина	MM	590	590	990	990	990	990	990	1090	1090
Глубина	MM	1040	1040	1040	1040	1040	1040	1040	1040	1040
Наружный блок										
Высота	MM	580	580	630	630	630	630	630	1268	1268
Ширина	MM	600	600	990	990	990	990	990	1120	1120
Глубина	MM	350	350	360	360	360	360	360	578	578

⁽¹⁾ Температура/влажность внутреннего воздуха 27° С/ 40%. Температура наружного воздуха 35° С.

⁽²⁾ Температура/влажность внутреннего воздуха 27°С/ 40%. Температура наружного воздуха 35°С.

⁽²⁾ Ротационный компрессор для моделей THS0025, 0035, 0045

INNOV@™ • 6 → 249 kW

Прецизионные кондиционеры

Основные применения

- Серверные
- Центры обработки данных

Преимущества оборудования

- Энергоэффективность
- Надежность
- Высокое качество
- Полный доступ через переднюю панель

Общая информация

Прецизионные агрегаты серии **INNOV**@[™] соответствуют требованиям по защите окружающей среды и предназначены **для** кондиционирования помещений сбольшим количеством электронного оборудования (серверные, центры управления, центры электронной обработки информации, центры обработки метеорологической информации и т.п.).

Эксклюзивный обтекаемый дизайн, окраска в современные цвета и прекрасные технические характеристики серии **INNOV**@™ представляют новый стандарт качества в области прецизионного кондиционирования воздуха. Также поставляются агрегаты работающие на хладагенте R410A.

Высокая энергоэффективность, небольшие размеры и низкий уровень шума - это цели, которые преследовала компания LENNOX при разработке агрегатов новой серии **INNOV (™)**, способных работать 24 часа в сутки, 365 дней в году.

Экономия электроэнергии достигает 45 % по сравнению со стандартными агрегатами.

Поставляются агрегаты следующих исполнений

Основные компоненты

Для упрощения монтажа и технического обслуживания доступ ко всем компонентам осуществляется с лицевой стороны агрегата. Для доступа к щитку автоматики, компрессору, вентиляторам, увлажнителю, электрическим нагревателям, терморегулирующему клапану и фильтру жидкостной линии достаточно снять лицевую панель. Это дает возможность быстро и безопасно обслуживать агрегат.

Использование современного технологического оборудования и высококачественных компонентов всемирно известных марок обеспечивает наивысшую эффективность и надежность агрегатов серии **INNOV**

™. Применение электронных терморегулирующих вентилей, бескорпусных радиальных вентиляторов и электроннокоммутируемых двигателей на постоянном токе обеспечивает низкое энергопотребление.

Система управления

Управление всеми функциями агрегатов серии **INNOV**@[™] осуществляется с помощью микропроцессорного контроллера Basic или Advanced Graphic. С помощью одного контроллера можно управлять до 8 объединенными в сеть агрегатами. При этом контроллер выравнивает время работы агрегатов и автоматическую работу агрегатов в режиме рабочий-резервный. Микропроцессорный контроллер оборудован ЖК-дисплеем (Basic) или графическим дисплеем (Advanced). Контроллер совместим со многими протоколами передачи данных. Кроме того, отдел программного обеспечения LENNOX может разработать систему управления под заказ.

INNOV@™ ФРЕОНОВОЕ ОХЛАЖДЕНИЕ ВОЗДУШНЫЙ КОНДЕНСАТОР ВЕРХНЯЯ/НИЖНЯЯ/ЗАМЕЩАЮЩАЯ ПОДАЧА ВОЗДУХА			0080	0100	0110	0130	0160	0190	0205	0201	0251	0281	0311
Полная холодопроизводительность (1):	кВт	5,9	7,7	9,3	10,6	12,7	15,8	18,4	20,5	21,2	23,2	27,7	31,6
Явная холодопроизводительность	кВт	5,9	7,4	9,3	10,6	12,5	15,6	17,3	18,9	21,2	23,2	25,5	27,2
Отношение явной мощности к полной		1,00	0,96	1,00	1,00	0,98	0,99	0,94	0,92	1	1	0,92	0,86
Количество компрессоров	спирал.	1	1	1	1	1	1	1	1	1	1	1	1
Расход воздуха	м3/ч	1785	2150	3530	3530	3700	5100	5100	5100	7280	7280	7280	7280
Тип вентилятора ⁽²⁾		EC											
Количество вентиляторов		1	1	1	1	1	1	1	1	1	1	1	2
Высота	MM	1875	1875	1875	1875	1875	1875	1875	1875	1998	1998	1998	1998
Длина	MM	600	600	900	900	900	900	900	900	1000	1000	1270	1270
Глубина	MM	600	600	600	600	600	600	600	600	795	795	795	795

INNOV@™ ФРЕОНОВОЕ ОХЛАЖДЕНИЕ ВОЗДУШНЫЙ КОНДЕНСАТОР ВЕРХНЯЯ/НИЖНЯЯ/ЗАМЕЩАЮЩАЯ ПОДАЧА ВОЗДУХА			0272	0302	0362	0422	0452	0532	0592	0602	0692	0762
Полная холодопроизводительность (1):	кВт	41,2	26,9	31,9	35,9	41,9	44,3	53,9	59,1	61,4	68,7	76,2
Явная холодопроизводительность	кВт	40,0	26,9	31,6	35,9	40,6	43,9	46,9	49,1	58,9	65,3	70,9
Отношение явной мощности к полной		0,97	1	0,99	1	0,97	0,99	0,87	0,83	0,96	0,95	0,93
Количество компрессоров	спирал.	1	2	2	2	2	2	2	2	2	2	2
Расход воздуха	м3/ч	12950	12950	12950	12950	12950	12950	14150	14150	19415	19415	19415
Тип вентилятора ⁽²⁾		EC										
Количество вентиляторов		2	2	2	2	2	2	3	3	3	3	3
Высота	MM	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998
Длина	MM	1750	1750	1750	1750	1750	1750	2000	2000	2500	2500	2500
Глубина	MM	795	795	795	795	795	795	795	795	795	795	795

INNOV@™ ФРЕОНОВОЕ ОХЛАЖДЕНИЕ ВОДЯНОЙ КОНДЕНСАТОР ВЕРХНЯЯ/НИЖНЯЯ/ЗАМЕЩАЮЩАЯ ПОДАЧА ВОЗДУХА			0080	0100	0110	0130	00160	0190	0205	0201	0251	0281	0311
Полная холодопроизводительность (1):	кВт	5,3	7,0	8,9	10,0	11,7	15,5	17,8	19,7	20,0	21,1	27,1	30,2
Явная холодопроизводительность	кВт	5,2	6,7	8,9	10,0	10,8	15,5	16,6	17,5	20,0	21,1	25,2	26,6
Отношение явной мощности к полной		0,98	0,95	1	1	0,92	1	0,93	0,89	1	1	0,93	0,88
Количество компрессоров спирал.		1	1	1	1	1	1	1	1	1	1	1	1
Расход воздуха	м3/ч	1785	2150	3530	3530	3700	5100	5100	5100	7280	7280	7280	7280
Тип вентилятора ⁽²⁾		EC	EC	EC	EC	EC	EC	EC	EC	EC	EC	EC	EC
Количество вентиляторов		1	1	1	1	1	1	1	1	1	1	1	2
Высота	MM	1875	1875	1875	1875	1875	1875	1875	1875	1998	1998	1998	1998
Длина мм		600	600	900	900	900	900	900	900	1000	1000	1270	1270
Глубина мм		600	600	600	600	600	600	600	600	795	795	795	795

⁽¹⁾ Температура/влажность внутреннего воздуха 24°С/ 50%. Температура наружного воздуха 35 °С.

⁽²⁾ Электроннокоммутируемый вентилятор

Также поставляются сухие градирни

Опционально поставляются центробежные вентиляторы для моделей 0060 - 0205

Опции естественного охлаждения (прямое / непрямое)

INONO™ ФРЕОНОВОЕ ОХЛАЖДЕНИЕ ВОДЯНОЙ КОНДЕНСАТОР ВЕРХНЯЯ/НИЖНЯЯ/ЗАМЕЩАЮЩАЯ ВОЗДУХА	КОНДЕНСАТОР ВЕРХНЯЯ/НИЖНЯЯ/ЗАМЕЩАЮЩАЯ ПОДАЧА			0302	0362	0422	0452	0532	0592	0602	0692	0762
Полная холодопроизводительность (1):	кВт	39,2	23,5	28,9	34,0	39,9	42,1	52,3	598,1	58,9	68,6	78,3
Явная холодопроизводительность	кВт	38,8	23,5	28,6	34,0	39,1	42,1	46	48,8	58,9	66,9	73,7
Отношение явной мощности к полной		0,99	1	0,99	1	0,98	1	0,88	0,84	1	0,97	0,94
Количество компрессоров спирал.		1	2	2	2	2	2	2	2	2	2	2
Расход воздуха	м3/ч	12950	12950	12950	12950	12950	12950	14150	14150	19415	19415	19415
Тип вентилятора ⁽²⁾		EC										
Количество вентиляторов		2	2	2	2	2	2	3	3	3	3	3
Высота	MM	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998	1998
Длина мм		1750	1750	1750	1750	1750	1750	2000	2000	2500	2500	2500
Глубина мм		795	795	795	795	795	795	795	795	795	795	795

⁽¹⁾ Температура/влажность внутреннего воздуха 24°С/ 50%. Температура наружного воздуха 35°С.

(2) Электроннокоммутируемый вентилятор

Опционально поставляются центробежные вентиляторы для моделей 0060 - 0205 Также поставляются агрегаты с двойным охлаждением

Опции естественного охлаждения (прямое / непрямое)

INNOV@™ ВОДЯНОЕ ОХЛАЖДЕНИЕ ВЕРХНЯЯ/ НИЖНЯЯ/ЗАМЕЩАЮЩАЯ ПОДАЧА ВОЗДУХА		0800	0110	0140	0160	0200	0230	0300	0380
Полная холодопроизводительность (1):	кВт	7,7	10,6	13,3	15,8	19,7	23,4	26,8	40,5
Явная холодопроизводительность	кВт	6,8	8,9	13,0	13,2	18,5	19,3	23,3	32,7
Отношение явной мощности к полной		0,88	0,84	0,98	0,83	0,94	0,83	0,87	0,81
Расход воздуха	м3/ч	2300	2400	3800	3800	5100	5100	7450	7450
Тип вентилятора ⁽²⁾		EC							
Количество вентиляторов		1	1	1	1	1	1	1	1
Высота	MM	1875	1875	1875	1875	1875	1875	1998	1998
Длина	MM	600	600	900	900	900	900	1000	1000
Глубина	MM	600	600	600	600	600	600	795	795

INNOV@™ ВОДЯНОЕ ОХЛАЖДЕНИЕ ВЕРХНЯЯ/ НИЖНЯЯ/ЗАМЕЩАЮЩАЯ ПОДАЧА ВОЗДУХА		0400	0500	0650	0750	0900	1000	1200
Полная холодопроизводительность (1):	кВт	43,5	57,3	69,1	83,1	88,7	107,6	133,4
Явная холодопроизводительность	кВт	36,6	47,7	56,8	66,2	74,1	88,0	102,8
Отношение явной мощности к полной		0,84	0,83	0,82	0,80	0,84	0,82	0,77
Расход воздуха	м3/ч	14550	14550	14550	14550	21400	21400	21400
Тип вентилятора ⁽²⁾		EC						
Количество вентиляторов		1	2	2	2	3	3	3
Высота	MM	1998	1998	1998	1998	1998	1998	1998
Длина	MM	1750	1750	1750	1750	2500	2500	2500
Глубина	MM	795	795	795	795	795	795	795

⁽¹⁾ Температура/влажность внутреннего воздуха 24° С/ 50% Температура воды вход/выход: 7 - 12° С Опции естественного охлаждения (прямое / непрямое)

(2) Электроннокоммутируемый вентилятор Опционально поставляются центробежные вентиляторы для моделей 0080 - 0230

Также поставляются сухие градирни

INNOV@™ ВОДЯНОЕ ОХЛАЖДЕНИЕ ВЕРХНЯЯ/ НИЖНЯЯ/ЗАМЕЩАЮЩАЯ ПОДАЧА ВОЗДУХА		1500 ⁽³⁾	1500 ⁽⁴⁾	1800 ⁽³⁾	1800 ⁽⁴⁾	2100 ⁽³⁾	2100 ⁽⁴⁾
Полная холодопроизводительность (1):	кВт	144,2	73	177,7	90	248,5	131,6
Явная холодопроизводительность	кВт	109,6	73	127,9	90	176,4	127,7
Отношение явной мощности к полной		0,76	1	0,72	1	0,71	0,98
Расход воздуха	м3/ч	24800	24800	26200	26200	36120	36120
Тип вентилятора ⁽²⁾		EC	EC	EC	EC	EC	EC
Количество вентиляторов		:	2	1	2	(3
Высота	ММ	1998		1998		1998	
Длина	ММ	25	510	25	510	3160	
Глубина		9.	45	945		945	

⁽¹⁾ Температура/влажность внутреннего воздуха 24°C/ 50%

Дополнительные принадлежности и конфигурации

- Агрегаты с двойным охлаждением
- Сухие контакты для аварийных сигналов
- Датчик утечки воды
- Специальная программа работы
- Расширенный микропроцессорный контроллер
- Электронное управление оборотами вентилятора конденсатора
- Связь по протоколам ModBus, TCP/IP, Bacnet ...
- Сенсорный графический дисплей

⁽³⁾ Температура воды вход/выход: 7 - 12 °C

Опции естественного охлаждения (прямое)

⁽²⁾ Электроннокоммутируемый вентилятор

⁽²⁾ Электроннокоммутируемый вентилятор (4): Температура воды вход/выход: 10 - 18°С

INNOV@™ ENERGY INVERTER • 3 → 63 kW

Прецизионные кондиционеры

Основные применения

- Серверные
- Центры обработки данных

Преимущества оборудования

- Энергоэффективность
- Надежность
- Высокое качество

Общая информация

Новая серия прецизионных кондиционеров **INNOV**®[™] **ENERGY** Inverter представляет решение с **плавным изменением холодопроизводительности для серверных и центров обработки данных.** Инверторная технология, применяющаяся в прецизионном кондиционере, обеспечивает оптимально необходимую холодопроизводительность. Плавно изменяя холодопроизводительность от 25 до 100% с шагом 1 герц, максимум 6 герц в секунду, агрегаты **INNOV**®[™] ENERGY Inverter представляют новую адаптивность в прецизионном кондиционировании. Плавное регулирование температуры, совмещенное с зависимым энергопотреблением, обеспечивает требуемую энергоэффективность и экономию.

Высокая энергоэффективность, небольшие размеры и низкий уровень шума - это цели, которые преследовала компания LENNOX при разработке агрегатов новой серии **INNOV**@™ **ENERGY**, способных работать 24 часа в сутки, 365 дней в году, обеспечивая только фактически необходимую мощность охлаждения.

Экономия электроэнергии достигает 45 % по сравнению со стандартными агрегатами.

Поставляются агрегаты следующих исполнений

Основные компоненты

Для упрощения монтажа и технического обслуживания доступ ко всем компонентам осуществляется с лицевой стороны агрегата. Для доступа к щитку автоматики, компрессору, вентиляторам, увлажнителю, электрическим нагревателям, терморегулирующему клапану и фильтру жидкостной линии достаточно снять лицевую панель. Это дает возможность быстро и безопасно обслуживать агрегат.

Использование современного технологического оборудования и высококачественных компонентов всемирно известных марок обеспечивает наивысшую эффективность и надежность агрегатов серии INNOV@™ ENERGY. Применение электронных терморегулирующих вентилей, бескорпусных радиальных вентиляторов и электроннокоммутируемых двигателей на постоянном токе обеспечивает низкое энергопотребление.

Система управления

Управление всеми функциями агрегатов серии INNOV@™ ENERGY осуществляется с помощью расширенного микропроцессорного контроллера со стандартным или сенсорным графическим дисплеем. С помощью одного контроллера можно управлять до 8 объединенными в сеть агрегатами. При этом контроллер выравнивает время работы агрегатов и автоматическую работу агрегатов в режиме рабочий-резервный. Микропроцессорный контроллер оборудован ЖК-дисплеем (Basic) или графическим дисплеем (Advanced). Контроллер совместим со многими протоколами передачи данных. Кроме того, отдел программного обеспечения LENNOX может разработать систему управления под заказ.

INNOV@™ ENERGY INVERTER ФРЕОНОВОЕ ОХЛАЖДЕНИЕ ВОЗДУ КОНДЕНСАТОР ВЕРХНЯЯ/НИЖНЯЯ/ЗАМЕЩАЮЩАЯ ПОДАЧА ВС		0060	0130	0281	0592
Скорость компрессора 30 герц					
Полная холодопроизводительность ^{(1):}	кВт	3,2	6,3	12,3	24,4
Явная холодопроизводительность	кВт	3,2	6,3	12,3	24,4
Отношение явной мощности к полной		1	1	1	1
Скорость компрессора 70 герц					
Полная холодопроизводительность	кВт	6,3	11	21,9	43,9
Явная холодопроизводительность	кВт	5,9	11	21,9	42,1
Отношение явной мощности к полной		0,94	1	1	0,96
Скорость компрессора 110 герц					
Полная холодопроизводительность	кВт	9,5	15,8	31,6	62,9
Явная холодопроизводительность	кВт	7,6	13,4	27,2	54,7
Отношение явной мощности к полной		0,8	0,85	0,86	0,87
Количество компрессоров ⁽³⁾	спирал.	1	1	1	2
Расход воздуха	м3/ч	1785	3700	7280	14150
Тип вентилятора ⁽²⁾		EC	EC	EC	EC
Количество вентиляторов		1	1	1	1
Длина	MM	1875	1875	1998	1998
Высота	MM	600	900	1270	2020
Глубина	MM	600	600	795	795

⁽¹⁾ Температура/влажность внутреннего воздуха 24°С/ 50%. Температура наружного воздуха 35°С.

(2) Электроннокоммутируемый вентилятор Также поставляются выносные конденсаторы

Дополнительные принадлежности и конфигурации

- Сухие контакты для аварийных сигналов
- Датчик утечки воды
- Полный доступ через переднюю панель
- Специальная программа работы
- Расширенный микропроцессорный контроллер
- Электронное управление оборотами вентилятора конденсатора
- Связь по протоколам ModBus, TCP/IP, Bacnet ...
- Dataweb
- Сенсорный графический дисплей

⁽³⁾ Электронный терморегулирующий вентиль входит в стандартную комплектацию

Опции естественного охлаждения (прямое / непрямое)

Мониторинг и

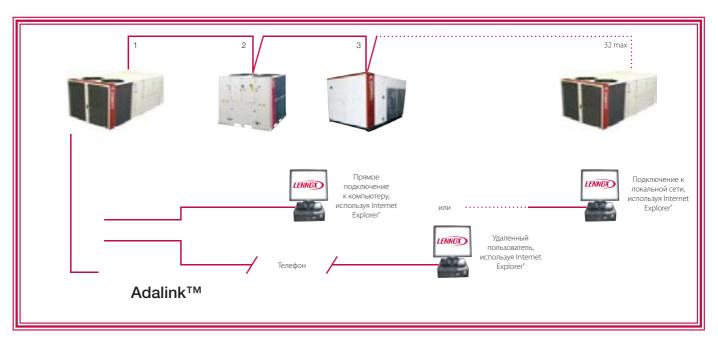
Диспетчеризация

Providing indoor climate comfort

• ADALINK™	138
• LENNOXVISION™	139

Основные применения

- Облегченный вариант системы диспетчеризации
- Небольшие объекты до 32 агрегатов


Преимущества оборудования

- Предназначена для агрегатов компании Lennox
- Система «подключи и работай»
- Отсутствие проблем с компьютером
- Использует только Internet Explorer®
- Легкость применения
- Годовой график работы
- Дистанционный доступ через модем, Ethernet или GPRS
- Поставляется на всех языках
- Очень хорошая цена

Система ADALINK™ - разработка компании LENNOX для мониторинга

и управления оборудованием кондиционирования и вентиляции. Максимальное количество 32 агрегата на одном объекте. Может подключаться к различным видам оборудования компании Lennox, крышным кондиционерам и холодильным машинам.

Очень простая установка, работает на любом компьютере с установленным Internet Explorer®, управляется локально или дистанционно через встроенный модем или GPRS модем.

Система ADALINK™ отображает карту объекта с установленными агрегатами, для каждого агрегата показан режим работы. По щелчку на рисунке агрегата пользователь переходит к просмотру параметров работы данного агрегата, журнала аварий и графиков, а также изменению уставок и временных периодов. Все информация представлена в красивом графическом виде.

Система является идеальным средством для обслуживающего персонала с уровнем доступа «эксперт», который предоставляет доступ ко всем параметрам и уставкам.

Также возможно создание годового графика работы оборудования при помощи интеллектуальной и удобной системы.

Основные применения

- Настоящая и полная система диспетчеризации
- Большие объекты: нет ограничений по количеству агрегатов

Преимущества оборудования

- Связь со всеми контроллерами компании Lennox (включая CLII) и другими устройствами
- Компьютер с предустановленной программой
- Аварийное оповещение по СМС или электронной почте
- Управление освещением
- Связь с другими системами диспетчеризации
- Дистанционный доступ через ADSL модем

Компания LENNOX представляет систему **LennoxVision™** - новое решение для диспетчеризации и дистанционного обслуживания. **LennoxVision™** – система диспетчеризации от компании LENNOX, она может объединять все агрегаты компании Lennox и другие устройства без ограничений. Настоящая система диспетчеризации, которая предоставляет доступ к параметрам всех агрегатов, осуществляет мониторинг, планирование работы и регулирование потребления энергии.

Программа LennoxVison™ обеспечивает полное управление различными агрегатами на объекте через различные экраны: главный экран агрегата, экраны сервиса, аварий, графиков и расписания работы. Система включает возможность дистанционного управления через модем (опция), связь с другими системами диспетчеризации, отправку аварийных оповещений через СМС или по электронной почте и управление освещением.

Система LennoxVison™ может использоваться как локальная система с монитором, мышью и клавиатурой, или как система мониторинга с доступом при помощи удаленного компьютера через модем или Интернет. Система **LennoxVision™** включает полностью предустановленную версию программы работающей на специальном компьютере, и имеет все коммуникационные порты для наилучшего использования функций веб-сервера и установки диспетчерского управления.

ОБЩАЯ ИНФОРМАЦИЯ

Providing indoor climate comfort

•	АКУСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ	142
•	ОЧИСТКА ВОЗДУХА	148
•	ПСИХРОМЕТРИЧЕСКАЯ ДИАГРАММА	150

УРОВЕНЬ ЗВУКОВОЙ МОЩНОСТИ И УРОВЕНЬ ЗВУКОВОГО ДАВЛЕНИЯ

Шум образуется в результате движения какого-либо тела, поэтому мы можем использовать понятие механического давления, выраженное в ваттах. Уровень звуковой мощности измеряется по отношению к пороговой звуковой мощности (10-12 Вт). Для расчетов используется следующая формула:

Lw = 10 x Log (W излучения / W пороговая)

Перейдем к описанию понятия уровень звукового давления.

Уровень звукового давления шума, воспринимаемого человеческим ухом или измеряемого инструментом, представляет собой происходящие в звуковой волне периодические изменения давления (сжатия и разрежения), выраженные в паскалях. Уровень

звукового давления измеряется по отношению к пороговому звуковому давлению (2,10 $^{-5}$ Па). Для расчетов используется следующая формула:

Lp = 20 x Log (Р излучения / Р пороговая)

ПРИМЕЧАНИЕ: Полученные по этим формулам значения являются безразмерными величинами. В данном случае эти величины измеряются в децибелах (дБ).

СПЕКТР

31,5	63	125	250	500	1000	2000	4000	8000	16000
	1ère	2e	Зе	4e	5e	6e	7e	8e	
					СРЕДНИЙ				

На практике шум представляет собой совокупность звуковых волн различной частоты. Человеческое ухо воспринимает частоты в диапазоне 20-16 000 Гц. На практике удобно при описании характеристик шума использовать частотные полосы. Диапазон частот, воспринимаемых человеческим ухом, разбит на 10 октавных

полос (частота октавы изменяется от одной частоты до удвоенной частоты.

Пример: от 320 до 640 Гц. Эти октавные полосы обозначаются средней частотой

ВЗВЕШИВАНИЕ

Для перехода от физических характеристик шума к субъективно воспринимаемым (физиологическим характеристикам) используется экспериментальный метод взвешивания. В этом случае шумовые характеристики классифицируются с использованием трех фильтров:

Частоты	63	125	250	500	1000	2000	4000	8000
Фильтр А: значения ниже 55 дБ	26,2	-16,1	-8,6	-3,2	0	1,2	1	-1,1
Фильтр В: значения от 55 до 85 дБ	-9,3	-4,2	-1,3	-0,3	0	-0,1	-0,7	-2,9
Фильтр С: значения выше 85 дБ	-0,8	-0,2	0	0	0	-0,2	-0,8	-3

ПРИМЕЧАНИЕ: Фильтр А наиболее часто используется на практике. Следует помнить, что уровни шума в единицах дБ и дБл (dBlin) соответствуют уровню шума без взвешивания, а уровни шума в единицах дБА, дБВ и дБС - уровню шума со взвешиванием (A, B или C).

Используются также разработанные ISO кривые NR показателей чувствительности человеческого уха. Кривые NR определяют номинальное значение при частоте 1000 Гц (используется также коэффициент шума NC, который аналогичен NR, но соответствует номинальному значению 1500 Гц).

ВНИМАНИЕ: В данном документе используются логарифмы с основанием 10.

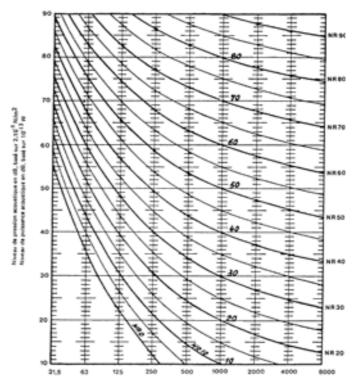


Fig. 3 Indice d'évaluation ISO du niveau de gêne

ИЗЛУЧЕНИЕ ШУМА В СВОБОДНОМ ЗВУКОВОМ ПОЛЕ

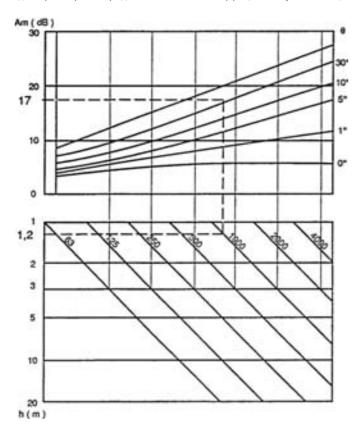
При теоретическом рассмотрении источник шума распространяет звуковые волны во всех направлениях без препятствий. Волны распространяются по концентрическим сферам. При достижении источника восприятия шума, энергия звуковой волны распределяется по поверхности сферы с радиусом, равным расстоянию от источника излучения до источника получения. Для расчетов можно воспользоваться следующей формулой:

 $Lp = Lw + 10 \times Log Q / (4 \times \pi \times r^2)$

Параметр ${f Q}$ называется коэффициентом направленности.

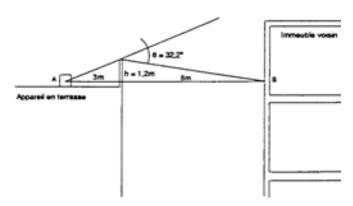
Он принимает следующие значения:

- 1, если источник шума расположен в открытом пространстве и волны распространяются в пределах сферы
- 2, если источник шума расположен на плоскости и волны распространяются в пределах полусферы
- **4**, если источник шума расположен на линии пересечения двух перпендикулярных плоскостей и волны распространяются в пределах 1/4 сферы
- **8**, если источник шума расположен в точке пересечения трех перпендикулярных плоскостей и волны распространяются в пределах 1/8 сферы


АКУСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ

РАСПРОСТРАНЕНИЕ ШУМА ПРИ НАЛИЧИИ ПРЕПЯТСТВИЙ

Для расчета уровня звукового давления можно воспользоваться следующей общей формулой:


$$Lp = Lw + 10 \times Log Q / (4 \times \pi \times r^2) - Am$$

где параметр Ат представляет собой коэффициент звукопоглощения препятствия.

Примеры:

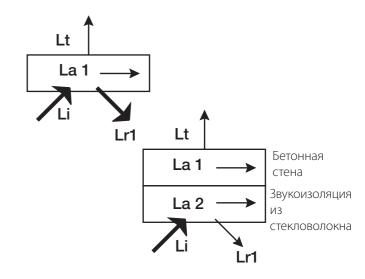
Агрегат установлен на возвышении, уровень звуковой мощности 77 дБ при частоте 1000 Гц.

1. Уровень звукового давления в точке В при отсутствии препятствий:

2. Уровень звукового давления в точке В при наличии препятствий: коэффициент Am согласно графику = 17

$$Lp = 77 - 8 - 20 Log (3 + 8) - 17 =$$
31 дБ

РАСПРОСТРАНЕНИЕ ШУМА В ЗАКРЫТОМ ПРОСТРАНСТВЕ


Если источник шума находится в помещении, то мы воспринимаем звуковые волны, поступающие не только от источника шума, но и отражаемые от стен и перекрытий помещения.

ОТРАЖЕНИЕ ВОЛН

Когда волна достигает стены (li), часть ее энергии проходит через стену (lt), другая часть поглощается стеной, а третья возвращается обратно в помещение.

Из следующего примера видно, что для той же самой падающей волны li энергия, передаваемая через стену (волна lt), практически не зависит от наличия звукоизоляции стены. Энергия, передаваемая через стену, зависит только от массы стены. Так как плотность звукоизоляции (например, стекловолокна) значительно ниже плотности бетона, то звукоизоляция практически не оказывает влияния на количество передаваемой через стену энергии.

В сравнении с этим, поглощение энергии стекловолокном значительно больше. В этом случае энергия рассеивается молекулами воздуха, содержащимися в стекловолоконном материале.

КОЭФФИЦИЕНТЫ ЗВУКОПОГЛОЩЕНИЯ ПОВЕРХНОСТЕЙ

Коэффициенты звукопоглощения некоторых материалов:

Частота	125	250	500	1000	2000	4000
Бетонная стена	0,01	0,01	0,01	0,01	0,02	0,02
Минеральная вата толщиной 25 мм	0,09	0,23	0,56	0,72	0,75	0,77

Если энергию падающей волны принять за 1, а звукопоглощение материала α, то энергия отраженной волны равна 1 - α.

 α - коэффициент звукопоглощения материала. Коэффициент является безразмерной величиной и изменяется в диапазоне от 0 до 1, в зависимости от частоты.

Коэффициент звукоизоляции поверхности:

$$\mathbf{A} = \mathbf{S} \cdot \boldsymbol{\alpha}$$
 S B M²

Авм² Sabine

Для помещения:

 $A = \Sigma Si . \alpha i$

ПОСТОЯННАЯ ПОМЕЩЕНИЯ Р

$$\alpha_{m} = \Sigma \, \text{Si.} \, \alpha \text{i} \, / \, \Sigma \, \text{Si} = \text{A} \, / \, \text{S}$$

$$R = S \cdot \alpha_m / (1 - \alpha_m)$$

ВРЕМЯ РЕВЕРБЕРАЦИИ В ПОМЕЩЕНИИ

Если источник шума резко отключается, то звуковые волны остаются еще некоторое время в помещении (до полного затухания). Временем реверберации помещения называется время, необходимое для уменьшения шума на 60 дБ.

Ниже приведены несколько значений времени реверберации для различных помещений:

Концертный зал: от 1 до 2 Конференц-зал: от 0.5 до 1.5 Номер в гостинице: 1 Церковь: от 2 до 7

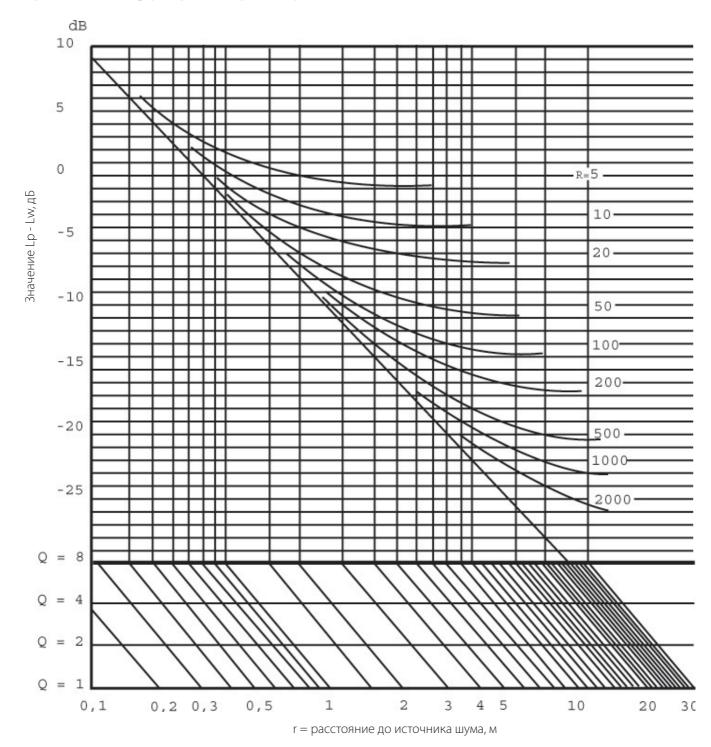
Плавательный бассейн: от 1,5 до 4

Следующая формула дает примерное соотношение между временем реверберации и характеристикой помещения:

$$T = 0.16 . V / A$$

Объединив формулу для распространения шума в свободном поле и формулу для реверберации помещения, получим:

$$Lp = Lw + 10 Log (Q / (4 x \pi x r^2) + 4 / R)$$

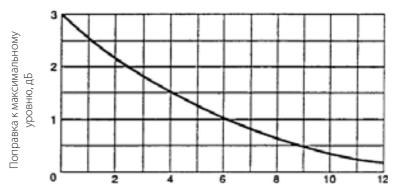

ПРИМЕЧАНИЕ:

 $Q / 4 \, \pi \, r^2$ — поле излучения 4 / R - поле отражения

АКУСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Графическое представление уравнения

Lp = Lw + 10 Log (Q / $(4 \times \pi \times r^2) + 4 / R)$

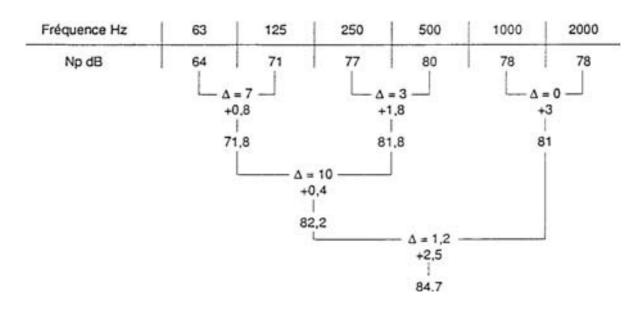

Поглощение шума уменьшается с расстоянием для прямого поля и остается постоянным для отраженного поля.

ПОЛНЫЙ УРОВЕНЬ ШУМА - СУММА УРОВНЕЙ ШУМА ОТДЕЛЬНЫХ ИСТОЧНИКОВ

Для определения полного уровня шума, создаваемого отдельными источниками, используется следующая формула:

Lp = 10 x Log
$$\Sigma$$
 10 (Lpi / 10)

Для практических расчетов используется следующий график:



Разность между двумя сравниваемыми уровнями

Для нескольких источников шума применяется следующая формула:

 $Lp = Lpi + 10 \times Log$ (количество источников)

Пример:

т. е. полный уровень звуковой мощности составляет 85 дБ.

ОЧИСТКА ВОЗДУХА

ЭФФЕКТИВНОСТЬ ВОЗДУШНЫХ ФИЛЬТРОВ: СТАНДАРТНЫЕ ФИЛЬТРЫ

Эффективность фильтров в настоящее время оценивается двумя различными методами. Метод ASHRAE: гравиметрическим способом определяется количество синтетических частиц, улавливаемых фильтром; нефелометрическим способом определяется количество естественных частиц, улавливаемых фильтром. Большая часть метода ASHRAE 52/76 вошла в стандарт NF EN779 (X 44-012), в который были включены также рекомендации Eurovent 4/5. Этот стандарт классифицирует фильтры с применением частиц размером 0,3 мкм. Следует упомянуть также стандарты NF X 44-013 (фотометрия CIN) и NF X 44-011 (флуоресцентный метод). Метод, описанный в стандарте NF EN 1822 (X 44-014), основывается на измерении размера "наиболее проникающих частиц" (МРРS).

Стандарты Европейского комитета по стандартизации:

- AFNOR (Франция)
- ASHRAE (США) (Американское общество инженеров по отоплению, охлаждению и кондиционированию воздуха)
- EUROVENT (Европейская ассоциация производителей воздухообрабатывающей и холодильной техники)
- CEN (Европейский комитет по стандартизации)
- Mil. Standard (Американские военные стандарты)

СТАНДАРТЫ ЕВРОПЕЙСКОГО КОМИТЕТА

В этом стандарте все фильтры разделены по эффективности и по назначению на 17 классов:

Воздушные фильтры для общей вентиляции NF EN 779 (X 44-012): Таблица 1

Методика испытаний воздушных фильтров, используемых для общей вентиляции, основана на процедуре, установленной 20 лет назад ASHRAE (ASHRAE 52/76), позже принятой с небольшими поправками в качестве рекомендации Eurovent (Eurovent 4/5) и AFNOR NF EN 779 (X 44-012).

Фильтры подвергаются двум типам испытаний:

Гравиметрическое испытание: через фильтр пропускается стандартизированная синтетическая пыль; количество уловленной пыли определяется путем взвешивания фильтра.

Данная процедура выполняется с новым фильтром, и, затем, на различных этапах загрязнения фильтра с помощью процедуры ускоренного загрязнения. Эффективность фильтра (Am) определяется путем усреднения значений эффективности, полученных на различных этапах загрязнения фильтра, вплоть до достижения аэродинамического сопротивления 250 Па.

Примечания:

- 1. Испытания фильтра проводятся в условиях, отличных от условий нормальной эксплуатации (ускоренное загрязнение, весовая концентрация загрязняющих веществ в 700 раз больше концентрации загрязняющих веществ в атмосферном воздухе, состав пыли не соответствует составу пыли, присутствующей в атмосферном воздухе).
- 2. Невозможно пересчитать эффективность, измеренную весовым (гравиметрическим) методом для синтетической пыли, в эффективность, измеренную спектральным методом (Eurovent 4/9).

ПО СТАНДАРТИЗАЦИИ

3. Измеренное значение эффективности (Am) превышает начальную эффективность для нового фильтра.

Испытание нефелометрическим методом: в качестве испытательной среды используется атмосферный воздух. Концентрация пыли на входе и выходе фильтра определяется путем пропускания содержащего пыль воздуха через слой высокоэффективной фильтровальной бумаги белого цвета. Степень потемнения бумаги на входе и выходе фильтра определяется нефелометрическим методом. По полученным значениям рассчитывается эффективность фильтра по атмосферной пыли.

Данная процедура выполняется с новым фильтром, и, затем, на различных этапах загрязнения фильтра с помощью процедуры ускоренного загрязнения.

Эффективность фильтра (Em) определяется путем усреднения значений эффективности, полученных на различных этапах загрязнения фильтра вплоть до достижения давления 450 Па.

Примечания:

- 1. Испытания фильтра проводятся в условиях, отличных от условий нормальной эксплуатации (ускоренное загрязнение)
- **2.** Невозможно пересчитать эффективность, измеренную нефелометрическим методом в эффективность, измеренную спектральным методом (Eurovent 4/9).
- **3.** Измеренное значение эффективности (Em) является усредненным значением для различных этапов загрязнения и, следовательно, превышает начальную эффективность для нового фильтра.

Таблица 1 : Классификация эффективности воздушных фильтров, используемых в системах общей вентиляции, в зависимости от метода испытания, описана в рекомендации Eurovent 4/5. Для правильного выбора и сравнения фильтров испытательные характеристики (расход воздуха в м³/ч, конечное сопротивление в Па) необходимо всегда указывать вместе с классом фильтра.

КЛАССИФИКАЦИЯ ФИЛЬТРОВ					
Класс фильтра	Средняя эффективность по синтетической пылиАт, %	Средняя эффективность по атмосферной пыли Em, %	NF EN779 (X 44-012)		
EU1	Am < 65	/	(G1)		
EU2	65 < или = Am < 80	/	(G2)		
EU3	80 < или = Am < 90	/	(G3)		
EU4	90 < или = Am	/	(G4)		
EU5	/	40 < или = Em < 60	(F5)		
EU6	/	60 < или = Em < 80	(F6)		
EU7	/	80 < или = Em < 90	(F7)		
EU8	/	90 < или = Em < 95	(F8)		
EU9	/	95 < или = Em	(F9)		

Высокоэффективные воздушные фильтры NF EN 1822 (X 44-014): Таблица 2

Данный стандарт имеет две существенные особенности:

- Оценка эффективности проводится в наименее благоприятных условиях: для нового фильтра и для наиболее проникающих частиц (размером от 0,1 до 0,2 мкм), известных как MPPS.
- Максимальная локальная "утечка" (максимальное локальное проникновение) количественно определена для классов фильтра, равных или выше H13.
 - Для фильтров классов H13 и H14 целостность (герметичность) фильтра может быть проверена испытанием на герметичность типа "испытания с помощью дыма".

Следует однако отметить, что приведенные здесь данные для HEPA и ULPA не соответствуют использованным ранее американским стандартам.

Эти классификации связаны со стандартизированными методами испытания и процедурами, предназначенными для количественного определения очищающей способности фильтров, и имеют определенные ограничения.

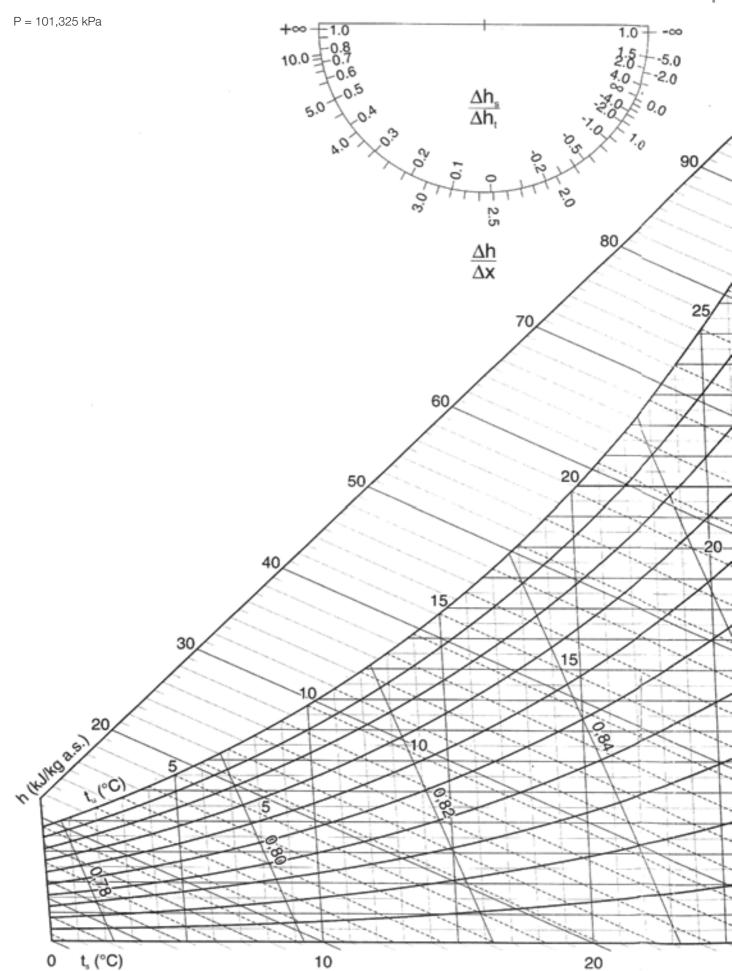
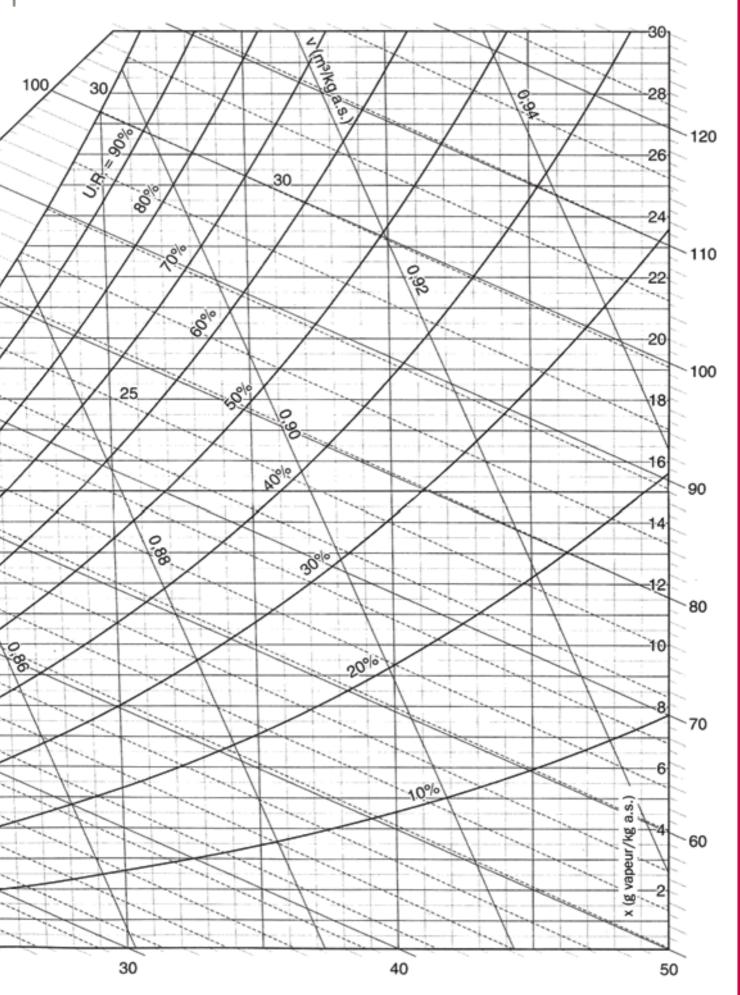

Все эти методы испытаний основаны на очень простой процедуре: испытуемые фильтры помещаются в воздушном поток, соответствующий рабочему (номинальному) расходу; на вход фильтра подается аэрозоль с определенными характеристиками; индивидуальные расчеты выполняются на входе и выходе фильтра; по результатам высчитывается количество пыли, уловленной фильтрами.

Таблица 2: Классификация высокоэффективных фильтров согласно рекомендации Eurovent 4/4.


начальная эффективность					
Класс фильтра	Характеристики фильтров				
EU 10	95 < или = Ei < 99,9	5 > или = Pi > 0,1			
EU 11	99,9 < или = < 99,97	0,1 > или = Pi > 0,03			
EU 12	99,97 < или = Ei < 99,99	0,03 > или = Pi > 0,01			
EU 13	99,99 < or = Ei < 99,999	0,01 > или = Pi > 0,001			
EU 14	99,999 < или = Еі	0,001 > = Pi			

Эти две страницы, описывающие классификацию фильтров, представляют собой обобщение информации, содержащейся в руководстве "Climatisation et sante" ("Кондиционирование воздуха и Здоровье"), которое нам любезно предоставила компания Uniclima. Для получения более подробной информации Вы можете заказать это издание по адресу: Editions Separ, 92 038 Paris la Defense cedex.

ПСИХРОМЕТРИЧЕСКАЯ Д

]ИАГРАММА

примечания

Продукция прошла испытания в соответствии с сертификационной программой Eurovent

Продукция соответствует европейским стандартам

Агрегат только охлаждение

Агрегат с тепловым насосом

Агрегат только нагрев

Агрегат только с газовым нагревом

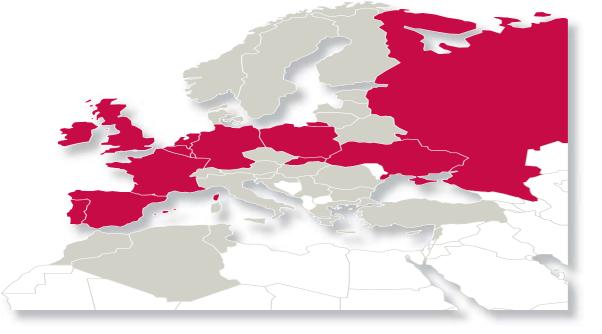
Теплоутилизатор

Конденсатор водяного охлаждения

Электрический нагреватель

Хладагент R407C

Экологически безопасный хладагент R410A


Герметичный спиральный компрессор (хладагент R407C или R410A)

Осевой вентилятор конденсатора

Центробежный вентилятор

Отделы прямых продаж:

БЕЛЬГИЯ И ЛЮКСЕМБУРГ

***** + 32 3 633 3045

ФРАНЦИЯ

***** +33 1 64 76 23 23

ГЕРМАНИЯ

***** + 49 69 42 09 79 0

НИДЕРЛАНДЫ

***** + 31 332 471 800

ПОЛЬША

***** +48 22 58 48 610

ПОРТУГАЛИЯ

***** +351 229 066 050

РОССИЯ

***** +7 495 626 56 53

СЛОВАКИЯ

***** +421 2 58 31 83 12

ИСПАНИЯ

***** +34 91 540 18 10

УКРАИНА

***** +380 44 461 87 79

ВЕЛИКОБРИТАНИЯ И ИРЛАНДИЯ

***** +44 1604 669 100

Дистрибьюторы и дилеры

ААлжир, Австрия, Беларусь, Ботсвана, Болгария, Кипр, Чехия, Дания, Эстония, Финляндия, Грузия, Греция, Венгрия, Израиль, Италия, Казахстан, Латвия, Ливан, Литва, Марокко, Ближний Восток, Норвегия, Румыния, Сербия, Словения, Швеция, Швейцария, Тунис, Турция

LENNOX DISTRIBUTION

***** +33.4.72.23.20.00

PCA GLE-0310-RU

В связи с постоянным совершенствованием конструкции технические характеристики агрегатов Lennox могут быть изменены без предварительного уведомления и без обязательств.

Нарушение требований инструкций при монтаже, настройке, модернизации или техническом обслуживании может привести к травмам и повреждению имущества.

Монтаж и обслуживание должно производиться квалифицированной монтажной и сервисной